• Title/Summary/Keyword: linear functions

Search Result 1,588, Processing Time 0.029 seconds

Some Inclusion Properties of New Subclass of Starlike and Convex Functions associated with Hohlov Operator

  • Sokol, Janusz;Murugusundaramoorthy, Gangadharan;Kothandabani, Thilagavathi
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.597-610
    • /
    • 2016
  • For a sufficiently adequate special case of the Dziok-Srivastava linear operator defined by means of the Hadamard product (or convolution) with Srivastava-Wright convolution operator, the authors investigate several mapping properties involving various subclasses of analytic and univalent functions, $G({\lambda},{\alpha})$ and $M({\lambda},{\alpha})$. Furthermore we discuss some inclusion relations for these subclasses to be in the classes of k-uniformly convex and k-starlike functions.

Pascal Distribution Series Connected with Certain Subclasses of Univalent Functions

  • El-Deeb, Sheeza M.;Bulboaca, Teodor;Dziok, Jacek
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.301-314
    • /
    • 2019
  • The aim of this article is to make a connection between the Pascal distribution series and some subclasses of normalized analytic functions whose coefficients are probabilities of the Pascal distribution. For these functions, for linear combinations of these functions and their derivatives, for operators defined by convolution products, and for the Alexander-type integral operator, we find simple sufficient conditions such that these mapping belong to a general class of functions defined and studied by Goodman, Rønning, and Bharati et al.

Optimum Correlation Immune Semi-bent Functions (최적 상관 무결 semi-bent 함수)

  • 지성택;박상우;김대호;임종인
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.1
    • /
    • pp.127-134
    • /
    • 1999
  • Boolean functions have an important role for designing block ciphers and hash functions. In this paper, we propose a method for designing optimum correlation immune functions. We also analyze their cryptographic properties - balancedness, nonlinearity, correlation value to the set of linear functions, correlation immunity, propagation characteristic, and algebraic degree. Such functions are special type of Semi-bent functions [2,5]

A NEW APPROACH FOR NUMERICAL SOLUTION OF LINEAR AND NON-LINEAR SYSTEMS

  • ZEYBEK, HALIL;DOLAPCI, IHSAN TIMUCIN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.165-180
    • /
    • 2017
  • In this study, Taylor matrix algorithm is designed for the approximate solution of linear and non-linear differential equation systems. The algorithm is essentially based on the expansion of the functions in differential equation systems to Taylor series and substituting the matrix forms of these expansions into the given equation systems. Using the Mathematica program, the matrix equations are solved and the unknown Taylor coefficients are found approximately. The presented numerical approach is discussed on samples from various linear and non-linear differential equation systems as well as stiff systems. The computational data are then compared with those of some earlier numerical or exact results. As a result, this comparison demonstrates that the proposed method is accurate and reliable.

A NEW SUBCLASS OF MEROMORPHIC FUNCTIONS DEFINED BY HILBERT SPACE OPERATOR

  • AKGUL, Arzu
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.495-506
    • /
    • 2016
  • In this paper, we introduce and investigate a new subclass of meromorphic functions associated with a certain integral operator on Hilbert space. For this class, we obtain several properties like the coefficient inequality, extreme points, radii of close-to-convexity, starlikeness and meromorphically convexity and integral transformation. Further, it is shown that this class is closed under convex linear combination.

ON A CHARACTERIZATION OF SECURE TRINOMIALS ON ℤ2n

  • Rhee, Min Surp
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.573-584
    • /
    • 2016
  • Invertible transformations over n-bit words are essential ingredients in many cryptographic constructions. Such invertible transformations are usually represented as a composition of simpler operations such as linear functions, S-P networks, Feistel structures and T-functions. Among them T-functions are probably invertible transformations and are very useful in stream ciphers. In this paper we will characterize a secure trinomial on ${\mathbb{Z}}_{2^n}$ which generates an n-bit word sequence without consecutive elements of period $2^n$.

On A Subclass of Harmonic Multivalent Functions Defined by a Certain Linear Operator

  • Darwish, Hanan Elsayed;Lashin, Abdel Moneim Yousof;Sowileh, Suliman Mohammed
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.651-663
    • /
    • 2019
  • In this paper, we introduce and study a new subclass of p-valent harmonic functions defined by modified operator and obtain the basic properties such as coefficient characterization, distortion properties, extreme points, convolution properties, convex combination and also we apply integral operator for this class.

CONDITIONAL FOURIER-FEYNMAN TRANSFORMS OF VARIATIONS OVER WIENER PATHS IN ABSTRACT WIENER SPACE

  • Cho, Dong-Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.5
    • /
    • pp.967-990
    • /
    • 2006
  • In this paper, we evaluate first variations, conditional first variations and conditional Fourier-Feynman transforms of cylinder type functions over Wiener paths in abstract Wiener space and then, investigate relationships among first variation, conditional first variation, Fourier-Feynman transform and conditional Fourier-Feynman transform of those functions. Finally, we derive the conditional Fourier-Feynman transform for the product of cylinder type function which defines the functions in a Banach algebra introduced by Yoo, with n linear factors.

INEQUALITIES FOR QUANTUM f-DIVERGENCE OF CONVEX FUNCTIONS AND MATRICES

  • Dragomir, Silvestru Sever
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.349-371
    • /
    • 2018
  • Some inequalities for quantum f-divergence of matrices are obtained. It is shown that for normalised convex functions it is nonnegative. Some upper bounds for quantum f-divergence in terms of variational and ${\chi}^2-distance$ are provided. Applications for some classes of divergence measures such as Umegaki and Tsallis relative entropies are also given.

SOME UMBRAL CHARACTERISTICS OF THE ACTUARIAL POLYNOMIALS

  • Kim, Eun Woo;Jang, Yu Seon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.73-82
    • /
    • 2016
  • The utility of exponential generating functions is that they are relevant for combinatorial problems involving sets and subsets. Sequences of polynomials play a fundamental role in applied mathematics, such sequences can be described using the exponential generating functions. The actuarial polynomials ${\alpha}^{({\beta})}_n(x)$, n = 0, 1, 2, ${\cdots}$, which was suggested by Toscano, have the following exponential generating function: $${\limits\sum^{\infty}_{n=0}}{\frac{{\alpha}^{({\beta})}_n(x)}{n!}}t^n={\exp}({\beta}t+x(1-e^t))$$. A linear functional on polynomial space can be identified with a formal power series. The set of formal power series is usually given the structure of an algebra under formal addition and multiplication. This algebra structure, the additive part of which agree with the vector space structure on the space of linear functionals, which is transferred from the space of the linear functionals. The algebra so obtained is called the umbral algebra, and the umbral calculus is the study of this algebra. In this paper, we investigate some umbral representations in the actuarial polynomials.