DOI QR코드

DOI QR Code

Pascal Distribution Series Connected with Certain Subclasses of Univalent Functions

  • El-Deeb, Sheeza M. (Department of Mathematics, Faculty of Science, Damietta University) ;
  • Bulboaca, Teodor (Faculty of Mathematics and Computer Science, Babes-Bolyai University) ;
  • Dziok, Jacek (Faculty of Mathematics and Natural Sciences, University of Rzeszow)
  • Published : 2019.06.23

Abstract

The aim of this article is to make a connection between the Pascal distribution series and some subclasses of normalized analytic functions whose coefficients are probabilities of the Pascal distribution. For these functions, for linear combinations of these functions and their derivatives, for operators defined by convolution products, and for the Alexander-type integral operator, we find simple sufficient conditions such that these mapping belong to a general class of functions defined and studied by Goodman, Rønning, and Bharati et al.

Keywords

References

  1. M. K. Aouf, On certain subclass of analytic p-valent functions of order alpha, Rend. Mat. Appl. (7), 8(1988), 89-104.
  2. R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math., 28(1997), 17-32. https://doi.org/10.5556/j.tkjm.28.1997.4330
  3. T. Bulboaca, Differential subordinations and superordinations: Recent results, House of Scientific Book Publ., Cluj-Napoca, 2005.
  4. T. R. Caplinger and W. M. Causey, A class of univalent functions, Proc. Amer. Math. Soc., 39(1973), 357-361. https://doi.org/10.1090/S0002-9939-1973-0320294-4
  5. P. L. Duren, Univalent Functions, Grundlehren der mathematischen Wissenschaften 259, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
  6. A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56(1)(1991), 87-92. https://doi.org/10.4064/ap-56-1-87-92
  7. A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155(1991), 364-370. https://doi.org/10.1016/0022-247X(91)90006-L
  8. O. P. Juneja and M. L. Mogra, A class of univalent functions, Bull. Sci. Math., 103(4)(1979), 435-447.
  9. S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transforms Spec. Funct., 9(2)(2000), 121-132. https://doi.org/10.1080/10652460008819249
  10. S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1-2)(1999), 327-336. https://doi.org/10.1016/S0377-0427(99)00018-7
  11. S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45(2000), 647-657.
  12. K. Lowner, Untersuchungen uber die Verzerrung bei konformen Abbidungen des Einheitskreises $\left|z\right|<1$, die durch Funktionen mit nichtverschwindender Ableitung geliefert werden, Leipzig Ber., 69(1917), 89-106.
  13. S. S. Miller and P. T. Mocanu, Differential subordination: Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel Dekker Inc., New York and Basel, 2000.
  14. R. Nevanlinna, Uber die konforme Abbildung von Sterngebieten, Oversikt av Finska Vet. Soc. Forh. (A), 63(1921-1922).
  15. F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sk lodowska Sect. A, 45(1991), 117-122.
  16. F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993), 189-196. https://doi.org/10.1090/S0002-9939-1993-1128729-7
  17. S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci., 55(2004), 2959-2961
  18. S. L. Shukla and Dashrath, On a class of univalent functions, Soochow J. Math., 10(1984), 117-126. https://doi.org/10.1080/0022250X.1984.9989962