In a previous paper, the authors of this paper studied $2{\times}2$ matrices in upper triangular form, whose entries are operators on Hilbert spaces, and in which the the (1, 1) entry has a nontrivial hyperinvariant subspace. We were able to show, in certain cases, that the $2{\times}2$ matrix itself has a nontrivial hyperinvariant subspace. This generalized two earlier nice theorems of H. J. Kim from 2011 and 2012, and made some progress toward a solution of a problem that has been open for 45 years. In this paper we continue our investigation of such $2{\times}2$ operator matrices, and we improve our earlier results, perhaps bringing us closer to the resolution of the long-standing open problem, as mentioned above.