Let ${\cal{L}}$ be a commutative subspace lattice on a Hilbert space ${\cal{H}}$ and X and Y be operators on ${\cal{H}}$. Let $${\cal{M}}_X=\{{\sum}{\limits_{i=1}^n}E_{i}Xf_{i}:n{\in}{\mathbb{N}},f_{i}{\in}{\cal{H}}\;and\;E_{i}{\in}{\cal{L}}\}$$ and $${\cal{M}}_Y=\{{\sum}{\limits_{i=1}^n}E_{i}Yf_{i}:n{\in}{\mathbb{N}},f_{i}{\in}{\cal{H}}\;and\;E_{i}{\in}{\cal{L}}\}.$$ Then the following are equivalent. (i) There is an operator A in $Alg{\cal{L}}$ such that AX = Y, Ag = 0 for all g in ${\overline{{\cal{M}}_X}}^{\bot},A^*A=AA^*$ and every E in ${\cal{L}}$ reduces A. (ii) ${\sup}\;\{K(E, f)\;:\;n\;{\in}\;{\mathbb{N}},f_i\;{\in}\;{\cal{H}}\;and\;E_i\;{\in}\;{\cal{L}}\}\;<\;\infty,\;{\overline{{\cal{M}}_Y}}\;{\subset}\;{\overline{{\cal{M}}_X}}$and there is an operator T acting on ${\cal{H}}$ such that ${\langle}EX\;f,Tg{\rangle}={\langle}EY\;f,Xg{\rangle}$ and ${\langle}ET\;f,Tg{\rangle}={\langle}EY\;f,Yg{\rangle}$ for all f, g in ${\cal{H}}$ and E in ${\cal{L}}$, where $K(E,\;f)\;=\;{\parallel}{\sum{\array}{n\\i=1}}\;E_{i}Y\;f_{i}{\parallel}/{\parallel}{\sum{\array}{n\\i=1}}\;E_{i}Xf_{i}{\parallel}$.