References
- A. K. Das and R. K. Nath, A characterisation of certain finite groups of odd order, Math. Proc. R. Ir. Acad., 111A(2)(2011), 69-78.
- S. Dolfi, M. Herzog and E. Jabara, Finite groups whose noncentral commuting elements have centralizers of equal size, Bull. Aust. Math. Soc., 82(2010), 293-304. https://doi.org/10.1017/S0004972710000298
- R. M. Guralnick and G. R. Robinson, On the commuting probability in finite groups, J. Algebra, 300(2)(2006), 509-528. https://doi.org/10.1016/j.jalgebra.2005.09.044
- W. H. Gustafson, What is the probability that two group elements commute?, Amer. Math. Monthly, 80(9)(1973), 1031-1034. https://doi.org/10.1080/00029890.1973.11993437
- P. Lescot, Isoclinism classes and commutativity degrees of finite groups, J. Algebra, 177(3)(1995), 847-869. https://doi.org/10.1006/jabr.1995.1331
- P. Lescot, Central extensions and commutativity degree, Comm. Algebra, 29(10)(2001), 4451-4460. https://doi.org/10.1081/AGB-100106768
- J. Pakianathan and K. Shankar, Nilpotent numbers, Amer. Math. Monthly, 107(7)(2000), 631-634. https://doi.org/10.1080/00029890.2000.12005248
- D. J. S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1996.
- D. J. Rusin, What is the probability that two elements of a finite group commute?, Pacific J. Math., 82(1)(1979), 237-247. https://doi.org/10.2140/pjm.1979.82.237