DOI QR코드

DOI QR Code

Null Controllability of Semilinear Integrodifferential Control Systems in Hilbert Spaces

  • Park, Ah-ran (Department of Applied Mathematics, Pukyong National University) ;
  • Jeong, Jin-Mun (Department of Applied Mathematics, Pukyong National University)
  • Received : 2018.03.08
  • Accepted : 2018.06.26
  • Published : 2019.06.23

Abstract

In this paper, we deal with the null controllability of semilinear functional integrodifferential control systems under the Lipschitz continuity of nonlinear terms. Moreover, we establish the regularity and a variation of constant formula for solutions of the given control systems in Hilbert spaces.

Keywords

References

  1. J. P. Aubin, Un theoreme de compacite, C. R. Acad. Sci. Paris, 256(1963), 5042-5044.
  2. K. Balachandran and J. P. Dauer, Controllability of nonlinear systems in Banach spaces: a survey, J. Optim. Theory Appl., 115(2002), 7-28. https://doi.org/10.1023/A:1019668728098
  3. V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Nordhoff Leiden, Netherlands, 1976.
  4. G. Di Blasio, K. Kunisch and E. Sinestrari, $L^2$-regularity for parabolic partial in-tegrodifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl., 102(1984), 38-57. https://doi.org/10.1016/0022-247X(84)90200-2
  5. P. L. Butzer and H. Berens, Semi-groups of operators and approximation, Springer-verlag, Belin-Heidelberg-Newyork, 1967.
  6. A. Carrasco and H. Leiva, Approximate controllability of a system of parabolic equations with delay, J. Math. Anal. Appl., 345(2008), 845-853. https://doi.org/10.1016/j.jmaa.2008.04.068
  7. R. F. Curtain and H. Zwart, An introduction to infinite dimensional linear systems theory, Springer-Verlag, New York, 1995.
  8. J. P. Dauer and N. I. Mahmudov, Exact null controllability of semilinear integro-differential systems in Hilbert spaces, J. Math. Anal. Appl., 299(2004), 322-332. https://doi.org/10.1016/j.jmaa.2004.01.050
  9. J. M. Jeong, Y. C. Kwun and J. Y. Park, Approximate controllability for semilinear retarded functional differential equations, J. Dynam. Control Systems, 5(3)(1999), 329-346. https://doi.org/10.1023/A:1021714500075
  10. J. M. Jeong and H. H. Roh, Approximate controllability for semilinear retarded systems, J. Math. Anal. Appl., 321(2006), 961-975. https://doi.org/10.1016/j.jmaa.2005.09.005
  11. J. M. Jeong, J. E. Ju and K. Y. Lee, Controllability for variational inequalities of parabolic type with nonlinear perturbation, J. Inequal. Appl., (2010), Art. ID 768469, 16 pp.
  12. J. M. Jeong, J. R. Kim and H. G. Kim, Regularity for solutions of nonlinear second order evolution equations, J. Math. Anal. Appl., 338(2008), 209-222. https://doi.org/10.1016/j.jmaa.2007.05.010
  13. J. L. Lions, Quelques methodes de resolution des problems aux limites non-lineaires, Paris, Dunnod, Gauthier-Villars, 1969.
  14. J. L. Lions and E. Magenes, Non-homogeneous boundary value problemes and applications, Springer-Verlag, Berlin-heidelberg-New York, 1972.
  15. N. I. Mahmudov, Approximate controllability of evolution systems with nonlocal conditions, Nonlinear Anal., 68(2008), 536-546. https://doi.org/10.1016/j.na.2006.11.018
  16. K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim., 25(1987), 715-722. https://doi.org/10.1137/0325040
  17. D. G. Park, J. M. Jeong and S. H. Park, Regularity of parabolic hemivariational inequalities with boundary conditions, J. Inequal. Appl., (2009), Art. ID 207873, 22 pp.
  18. J. Y. Park and S. H. Park, On solutions for a hyperbolic system with differential inclusion and memory source term on the boundary, Nonlinear Anal., 57(2004), 459-472. https://doi.org/10.1016/j.na.2004.02.024
  19. R. Sakthivel, N. I. Mahmudov and J. H. Kim, Approximate controllability of nonlinear impulsive differential systems, Rep. Math. Phys., 60(2007), 85-96. https://doi.org/10.1016/S0034-4877(07)80100-5
  20. N. Sukavanam and N. K. Tomar, Approximate controllability of semilinear delay control systems, Nonlinear Funct. Anal. Appl., 12(2007), 53-59.
  21. H. Tanabe, Equations of evolution, Pitman, Boston, Mass.-London, 1979.
  22. H. Triebel, Interpolation theory, function spaces, differential operators, NorthHolland, 1978.
  23. H. X. Zhou, Approximate controllability for a class of semilinear abstract equations, SIAM J. Control Optim., 21(1983), 551-565. https://doi.org/10.1137/0321033