References
- J. P. Aubin, Un theoreme de compacite, C. R. Acad. Sci. Paris, 256(1963), 5042-5044.
- K. Balachandran and J. P. Dauer, Controllability of nonlinear systems in Banach spaces: a survey, J. Optim. Theory Appl., 115(2002), 7-28. https://doi.org/10.1023/A:1019668728098
- V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Nordhoff Leiden, Netherlands, 1976.
-
G. Di Blasio, K. Kunisch and E. Sinestrari,
$L^2$ -regularity for parabolic partial in-tegrodifferential equations with delay in the highest-order derivatives, J. Math. Anal. Appl., 102(1984), 38-57. https://doi.org/10.1016/0022-247X(84)90200-2 - P. L. Butzer and H. Berens, Semi-groups of operators and approximation, Springer-verlag, Belin-Heidelberg-Newyork, 1967.
- A. Carrasco and H. Leiva, Approximate controllability of a system of parabolic equations with delay, J. Math. Anal. Appl., 345(2008), 845-853. https://doi.org/10.1016/j.jmaa.2008.04.068
- R. F. Curtain and H. Zwart, An introduction to infinite dimensional linear systems theory, Springer-Verlag, New York, 1995.
- J. P. Dauer and N. I. Mahmudov, Exact null controllability of semilinear integro-differential systems in Hilbert spaces, J. Math. Anal. Appl., 299(2004), 322-332. https://doi.org/10.1016/j.jmaa.2004.01.050
- J. M. Jeong, Y. C. Kwun and J. Y. Park, Approximate controllability for semilinear retarded functional differential equations, J. Dynam. Control Systems, 5(3)(1999), 329-346. https://doi.org/10.1023/A:1021714500075
- J. M. Jeong and H. H. Roh, Approximate controllability for semilinear retarded systems, J. Math. Anal. Appl., 321(2006), 961-975. https://doi.org/10.1016/j.jmaa.2005.09.005
- J. M. Jeong, J. E. Ju and K. Y. Lee, Controllability for variational inequalities of parabolic type with nonlinear perturbation, J. Inequal. Appl., (2010), Art. ID 768469, 16 pp.
- J. M. Jeong, J. R. Kim and H. G. Kim, Regularity for solutions of nonlinear second order evolution equations, J. Math. Anal. Appl., 338(2008), 209-222. https://doi.org/10.1016/j.jmaa.2007.05.010
- J. L. Lions, Quelques methodes de resolution des problems aux limites non-lineaires, Paris, Dunnod, Gauthier-Villars, 1969.
- J. L. Lions and E. Magenes, Non-homogeneous boundary value problemes and applications, Springer-Verlag, Berlin-heidelberg-New York, 1972.
- N. I. Mahmudov, Approximate controllability of evolution systems with nonlocal conditions, Nonlinear Anal., 68(2008), 536-546. https://doi.org/10.1016/j.na.2006.11.018
- K. Naito, Controllability of semilinear control systems dominated by the linear part, SIAM J. Control Optim., 25(1987), 715-722. https://doi.org/10.1137/0325040
- D. G. Park, J. M. Jeong and S. H. Park, Regularity of parabolic hemivariational inequalities with boundary conditions, J. Inequal. Appl., (2009), Art. ID 207873, 22 pp.
- J. Y. Park and S. H. Park, On solutions for a hyperbolic system with differential inclusion and memory source term on the boundary, Nonlinear Anal., 57(2004), 459-472. https://doi.org/10.1016/j.na.2004.02.024
- R. Sakthivel, N. I. Mahmudov and J. H. Kim, Approximate controllability of nonlinear impulsive differential systems, Rep. Math. Phys., 60(2007), 85-96. https://doi.org/10.1016/S0034-4877(07)80100-5
- N. Sukavanam and N. K. Tomar, Approximate controllability of semilinear delay control systems, Nonlinear Funct. Anal. Appl., 12(2007), 53-59.
- H. Tanabe, Equations of evolution, Pitman, Boston, Mass.-London, 1979.
- H. Triebel, Interpolation theory, function spaces, differential operators, NorthHolland, 1978.
- H. X. Zhou, Approximate controllability for a class of semilinear abstract equations, SIAM J. Control Optim., 21(1983), 551-565. https://doi.org/10.1137/0321033