References
- S. Azami, Eigenvalue variation of the p-Laplacian under the Yamabe flow, Cogent math., 3(2016), Art. ID 1236566, 10 pp.
- S. Azami,Monotonicity of eigenvalues of Witten-Laplace operator along the Ricci-Bourguignon flow, AIMS mathematics, 2(2)(2017), 230-243. https://doi.org/10.3934/Math.2017.2.230
-
X. Cao, Eigenvalues of (
$-{\Delta}+\frac{R}{2}$ ) on mannifolds with nonegative curvature operator, Math. Ann., 337(2)(2007), 435-441. https://doi.org/10.1007/s00208-006-0043-5 - X. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc., 136(2008), 4075-4078. https://doi.org/10.1090/S0002-9939-08-09533-6
- L. F. D. Cerbo, Eigenvalues of the Laplacian under the Ricci flow, Rend. Mat. Appl. (7), 27(2007), 183-195.
- Q.-M. Cheng and H. C. Yang, Estimates on eigenvalues of Laplacian, Math. Ann., 331(2005), 445-460. https://doi.org/10.1007/s00208-004-0589-z
- B. Chow, The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Comm. Pure Appl. Math., 45(8)(1992), 1003-1014. https://doi.org/10.1002/cpa.3160450805
- B. Chow and D. Knopf, The Ricci flow: an introduction, Mathematical Surveys and Monographs 110, AMS, 2004.
- S. Fang and F. Yang, First eigenvalues of geometric operators under the Yamabe flow, Bull. Korean Math. Soc., 53(2016), 1113-1122. https://doi.org/10.4134/BKMS.b150530
- G. Perelman, The entropy formula for the Ricci flow and its geometric applications, (2002), ArXiv:math/0211159.
- L. F. Wang, Eigenvalue estimate for the weighted p-Laplacian, Ann. Mat. Pura Appl. (4), 191(2012), 539-550. https://doi.org/10.1007/s10231-011-0195-0
- L. F.Wang, Gradient estimates on the weighted p-Laplace heat eqaution, J. Differential equations, 264(2018), 506-524. https://doi.org/10.1016/j.jde.2017.09.012
- J. Y. Wu, First eigenvalue monotonicity for the p-Laplace operator under the Ricci flow, Acta Math. Sin. (Engl. Ser.), 27(8)(2011), 1591-1598. https://doi.org/10.1007/s10114-011-8565-5
- F. Zeng, Q. He and B. Chen, Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow, Pacific J. Math., 296(1)(2018), 1-20. https://doi.org/10.2140/pjm.2018.296.1