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A NEW SUBCLASS OF MEROMORPHIC FUNCTIONS

DEFINED BY HILBERT SPACE OPERATOR

Arzu AKGÜL

Abstract. In this paper, we introduce and investigate a new sub-
class of meromorphic functions associated with a certain integral
operator on Hilbert space. For this class,we obtain several proper-
ties like the coefficient inequality, extreme points, radii of close-to-
convexity, starlikeness and meromorphically convexity and integral
transformation. Further, it is shown that this class is closed under
convex linear combination.

1. Introduction

Let Σ denote the class of analytic functions in the punctured unit
disc

U∗ = {z ∈ C : 0 < |z| < 1} = U\ {0} ,
with a simple pole at the origin of the form

(1) f(z) =
1

z
+

∞∑

n=1

anz
n.

Let g ∈ Σ given by

(2) g(z) =
1

z
+

∞∑

n=1

bnz
n.

Then the Hadamard product(or convolution) [6] of the functions f and
g , denoted by f ∗ g, is given by

(3) (f ∗ g)(z) = 1

z
+

∞∑

n=1

anbnz
n.
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There are many papers about some subclasses of meromorphic func-
tions associated with several families of integral operators and derivate
operators (see for example [2], [9], [10], [11], [12], [13] ).

Lashin [10] defined an integral operator Jµ : Σ → Σ :

(4) Jµ = Jµf(z) =
µ

zµ+1

∫ z

0
tµf (t) dt (µ > 0; z ∈ U∗) ,

integrating (4) ,we obtain

(5) Jµf(z) =
1

z
+

∞∑

n=1

µ

n+ µ+ 1
anz

n =
1

z
+

∞∑

n=1

L(n, µ)anz
n,

where

(6) L(n, µ) =
µ

n+ µ+ 1
.

Let H be a Hilbert space on the complex field and L(H) denote
the algebra of all bounded linear operators on H. For a complex-valued
function f analytic in a domain E of the complex plain containing the
spectrum σ(T ) of the bounded linear operator T , let f(T ) denote the
operator on H defined by the Riesz-Dunford integral [5]

f(T ) =
1

2πi

∫

C
(zI − T )−1f(z)dz,

where I is the identity operator on H and C is a positively oriented
simple closed rectifiable closed contour containing the spectrum σ(T ) in
the interior domain [8]. The operator f(T ) can also be defined by the
following series:

f(T ) =
∞∑

n=0

f (n)(0)

n!
Tn.

which converges in the norm topology.
The class of all functions f ∈ Σ with an ≥ 0 is denoted by Σp. The

object of the present paper is to investigate the following subclass of Σp

associated with the integral operator Jµf(z).

Definition 1.1. For 0 ≤ β < 1 and 0 ≤ α < 1, a function f ∈ Σp

given by (1) is in the class Mp(α, β, T ) if∥∥T (Jµf(T ))′ − {(β − 1)Jµf(T ) + βT (Jµf(T ))
′}∥∥

<
∥∥T (Jµf(T ))′ + (1− 2α){(β − 1)Jµf(T ) + βT (Jµf(T ))

′}∥∥ .
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for all operators T with ‖T‖ < 1 and T 6= Θ(Θ is the zero operator on
H).

Akgul and Bulut [1] defined new subclass for meromoprphic functions
associated with a certain integral operator on Hilbert spaces and inves-
tigated some properties of this class. In this study, we obtain coefficient
estimates, radii of starlikeness, and convexity for the functions in the
class Mp(α, β, T ). We employ the technique adopted by [1], [2], [3] and
[4].

2. Coefficient Bounds

We first give a characterization of the class Mp(α, β, T ) by finding
necessary and sufficient condition for a function in this class. This char-
acterization implies coefficient estimates.

Theorem 2.1. A function f ∈ Σp given by (1) is in the class
Mp(α, β, T ) for all proper contraction T with T 6= Θ if and only if

(7)
∞∑

n=1

[n+ α− αβ(n+ 1)]L(n, µ)an ≤ 1− α.

The result is sharp for the function

(8) f(z) =
1

z
+

1− α

[n+ α− αβ(n+ 1)]L(n, µ)
zn (n ≥ 1) .
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Proof. Suppose that (7) is true for 0 ≤ β < 1 and 0 ≤ α < 1. Then
∥∥T (Jµf(T ))′ − {(β − 1)Jµf(T ) + βT (Jµf(T ))

′}∥∥
−∥∥T (Jµf(T ))′ + (1− 2α){(β − 1)Jµf(T ) + βT (Jµf(T ))

′}∥∥

=

∥∥∥∥∥
∞∑

n=1

(n+ 1)(1− β)L(n, µ)anT
n

∥∥∥∥∥

−
∥∥∥∥∥2(1− α)T−1 −

∞∑

n=1

[n+ (1− 2α)(β − 1 + βn)]L(n, µ)anT
n

∥∥∥∥∥

≤
∞∑

n=1

(n+ 1)(1− β)L(n, µ)an ‖T‖n − 2(1− α)
∥∥T−1

∥∥

+
∞∑

n=1

[n+ (1− 2α)(β − 1 + βn)]L(n, µ)an ‖T‖n

= 2
∞∑

n=1

[n+ α− αβ(n+ 1)]L(n, µ)an ‖T‖n − 2(1− α)
∥∥T−1

∥∥

≤ 2(1− α)− 2(1− α) = 0, (by using (7))

and so f ∈ Σp is in the class Mp(α, β, T ).
Conversely, let f ∈ Mp(α, β, T ). We need only show that each function
f of the class Mp(α, β, T ) satisfies the coefficient inequality (7). Since
f ∈ Mp(α, β, T ), then

∥∥T (Jµf(T ))′ − {(β − 1)Jµf(T ) + βT (Jµf(T ))
′}∥∥

<
∥∥T (Jµf(T ))′ + (1− 2α){(β − 1)Jµf(T ) + βT (Jµf(T ))

′}∥∥ .
From this inequality, it is obtained that

∥∥∥∥∥
∞∑

n=1

(n+ 1)(1− β)L(n, µ)anT
n+1

∥∥∥∥∥

<

∥∥∥∥∥2(1− α)−
∞∑

n=1

[n+ (1− 2α)(β − 1 + βn)]L(n, µ)anT
n+1

∥∥∥∥∥ .

By choosing T = rI (0 < r < 1) in above inequality, we get

∞∑
n=1

(n+ 1)(1− β)L(n, µ)anr
n+1

2(1− α)−
∞∑
n=1

[n+ (1− 2α)(β − 1 + βn)]L(n, µ)anrn+1

< 1.
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Letting r → 1− in the above inequality, we obtain the assertion (7) .
This completes the proof of our theorem.

From Theorem 2.1 we have the following result.

Corollary 2.2. If a function f ∈ Σp given by (1) is in the class
Mp(α, β, T ), then

an ≤ 1− α

[n+ α− αβ(n+ 1)]L(n, µ)
(n ≥ 1) .

The result is sharp for the function f of the form (8).

3. Extreme points

Theorem 3.1. Let

f0(z) =
1

z

and

(9) fn(z) =
1

z
+

1− α

[n+ α− αβ(n+ 1)]L(n, µ)
zn (n = 1, 2, . . .) .

Then f ∈ Mp(α, β, T ) if and only if it can be represented in the form

f(z) =
∞∑

n=0

τnfn(z)

(
τn ≥ 0,

∞∑

n=0

τn = 1

)
.

Proof. Assume that f(z) =
∑∞

n=0 τnfn(z), (τn ≥ 0, n = 0, 1, 2, . . . ;∑∞
n=0 τn = 1). Then we have

f(z) =
∞∑

n=0

τnfn(z)

= τ0f0(z) +
∞∑

n=1

τnfn(z)

=
1

z
+

∞∑

n=1

τn
1− α

[n+ α− αβ(n+ 1)]L(n, µ)
zn.
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Therefore
∞∑

n=1

[n+ α− αβ(n+ 1)]L(n, µ)τn
1− α

[n+ α− αβ(n+ 1)]L(n, µ)

= (1− α)
∞∑

n=1

τn

= (1− α)(1− τ0)

≤ (1− α).

Hence by Theorem 2.1, f ∈ Mp(α, β, T ). Conversely, suppose that f ∈
Mp(α, β, T ). Since, by Corollary 2.2,

an ≤ 1− α

[n+ α− αβ(n+ 1)]L(n, µ)
(n ≥ 1) ,

setting

τn =
[n+ α− αβ(n+ 1)]L(n, µ)

1− α
an (n ≥ 1)

and τ0 = 1−∑∞
n=1 τn, we obtain

f(z) = τ0f0(z) +
∞∑

n=1

τnfn(z).

This completes the proof of the theorem.

4. Radii of Close-to-Convexity, Starlikeness and Convexity

We concentrate upon getting the radii of meromorphically close-to-
convexity, starlikeness and convexity for functions f in the classMp(α, β, T ).

Theorem 4.1. Let f ∈ Mp(α, β, T ). Then f is meromorphically
close-to-convex of order γ (0 ≤ γ < 1) in the disk |z| < r1, where

r1 = inf
n∈N

[
(1− γ) [n+ α− αβ(n+ 1)]L(n, µ)

n (1− α)

] 1
n+1

.

The result is sharp for the extremal function given by (8).

Proof. It sufficies to show that

(10)
∥∥∥ f

′
(T )T 2 + 1

∥∥∥ < 1− γ.
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By Theorem 2.1, we have
∞∑

n=1

[n+ α− αβ(n+ 1)]L(n, µ)

1− α
an ≤ 1.

So the inequality

∥∥∥ f
′
(T )T 2 + 1

∥∥∥ =

∥∥∥∥∥
∞∑

n=1

nanT
n+1

∥∥∥∥∥ ≤
∞∑

n=1

nan ‖T‖n+1 < 1− γ

holds true if

n ‖T‖n+1

1− γ
≤ [n+ α− αβ(n+ 1)]L(n, µ)

1− α
.

Then, (10) holds true if

‖T‖n+1 ≤ (1− γ) [n+ α− αβ(n+ 1)]L(n, µ)

n (1− α)
(n ≥ 1) ,

which yields the close-to-convexity of the function and completes the
proof.

Theorem 4.2. Let f ∈ Mp(α, β, T ). Then f is meromorphically
starlike of order γ (0 ≤ γ < 1) in the disk |z| < r2, where

r2 = inf
n∈N

[(
1− γ

n+ 2− γ

)
[n+ α− αβ(n+ 1)]L(n, µ)

1− α

] 1
n+1

.

The result is sharp for the extremal function given by (8) .

Proof. By using the technique employed in the proof of Theorem 4.1,
we can show that ∥∥∥∥∥

Tf
′
(T )

f(T )
+ 1

∥∥∥∥∥ < 1− γ,

for |z| < r2, and prove that the assertion of the theorem is true.

Theorem 4.3. Let f ∈ Mp(α, β, T ). Then f is meromorphically
convex of order γ (0 ≤ γ < 1) in the disk |z| < r3 where

r3 = inf
n∈N

[(
1− γ

n+ 2− γ

)
[n+ α− αβ(n+ 1)]L(n, µ)

n (1− α)

] 1
n+1

.

The result is sharp for the extremal function given by

fn(z) =
1

z
+

n (1− α)

[n+ α− αβ(n+ 1)]L(n, µ)
zn .
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Proof. By using the technique employed in the proof of Theorem 4.1
we can show that ∥∥∥∥∥

Tf
′′
(T )

f ′(T )
+ 2

∥∥∥∥∥ < 1− γ,

for |z| < r3 and prove that the assertion of the theorem is true.

5. Hadamard Product

Theorem 5.1. For functions f, g ∈ Σp defined by (1) and (2) , re-
spectively, let f, g ∈ Mp(α, β, T ). Then the Hadamard product f ∗ g ∈
Mp(ρ, β, T ) where

ρ ≤ 1− (1− α)2(n+ 1)(1− β)

(1− α)2(1− β(n+ 1)) + [n+ α− αβ(n+ 1)]2 L(n, µ)

Proof. We need to find the largest ρ such that

∞∑

n=1

[n+ ρ− ρβ(n+ 1)]L(n, µ)

1− ρ
anbn ≤ 1.

Since f, g ∈ Mp(α, β, T ) by Theorem 2.1, we have

(11)
∞∑

n=1

[n+ α− αβ(n+ 1)]L(n, µ)

1− α
an ≤ 1,

and

(12)
∞∑

n=1

[n+ α− αβ(n+ 1)]L(n, µ)

1− α
bn ≤ 1.

From (11) and (12) we find, by means of the Cauchy-Schwartz in-
equality, that

(13)

∞∑

n=1

[n+ α− αβ(n+ 1)]L(n, µ)

1− α

√
anbn ≤ 1.

We want only to show that

[n+ ρ− ρβ(n+ 1)]L(n, µ)

1− ρ
anbn

≤ [n+ α− αβ(n+ 1)]L(n, µ)

1− α

√
anbn,
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that is,

(14)
√
anbn ≤ (1− ρ) [n+ α− αβ(n+ 1)]

(1− α) [n+ ρ− ρβ(n+ 1)]
.

On the other hand, from (13) we have

(15)
√

anbn ≤ 1− α

[n+ α− αβ(n+ 1)]L(n, µ)
.

Therefore in view of (14) and (15) it is enough to find the largest ρ
that

1− α

[n+ α− αβ(n+ 1)]L(n, µ)

≤ (1− ρ) [n+ α− αβ(n+ 1)]

(1− α) [n+ ρ− ρβ(n+ 1)]

which yields

ρ ≤ [n+ α− αβ(n+ 1)]2 L(n, µ)− n(1− α)2

[n+ α− αβ(n+ 1)]2 L(n, µ) + (1− α)2 [1− β(n+ 1)]

that is,

ρ ≤ 1− (1− α)2(n+ 1)(1− β)

(1− α)2(1− β(n+ 1)) + [n+ α− αβ(n+ 1)]2 L(n, µ)
.

Theorem 5.2. For functions f, g ∈ Σp defined by (1) and (2) , re-

spectively, let f, g ∈ Mp(α, β, T ). Then the function k(z) = 1
z+

∞∑
n=1

(a2n+

b2n)z
n is in the class Mp(ρ, β, T ) where

ρ ≤ 1− 2(1− α)2L(n, µ)[1− β(n+ 1) + n]

{[n+ α− αβ(n+ 1)]L(n, µ)}2 + 2(1− α)2L(n, µ)[1− β(n+ 1)]

Proof. Since f, g ∈ Mp(α, β, T ) we have

(16)

∞∑

n=1

{
[n+ α− αβ(n+ 1)]L(n, µ)an

1− α

}2

≤ 1

and

(17)
∞∑

n=1

{
[n+ α− αβ(n+ 1)]L(n, µ)bn

1− α

}2

≤ 1
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Combining the last two inequalities, we get

(18)
∞∑

n=1

1

2

{
[n+ α− αβ(n+ 1)]L(n, µ)

1− α

}2

(a2n + b2n) ≤ 1

But we need to find the largest ρ such that

(19)

∞∑

n=1

[n+ ρ− ρβ(n+ 1)]L(n, µ)(a2n + b2n)

1− ρ
≤ 1

The inequality(19) would hold if

[n+ ρ− ρβ(n+ 1)]L(n, µ)

1− ρ
≤ 1

2

{
[n+ α− αβ(n+ 1)]L(n, µ)

1− α

}2

Then we have

ρ ≤ {[n+ α− αβ(n+ 1)]L(n, µ)}2 − 2n(1− α)2L(n, µ)

{[n+ α− αβ(n+ 1)]L(n, µ)}2 + 2(1− α)2L(n, µ)[1− β(n+ 1)]

= 1− 2(1− α)2L(n, µ)[1− β(n+ 1) + n]

{[n+ α− αβ(n+ 1)]L(n, µ)}2 + 2(1− α)2L(n, µ)[1− β(n+ 1)]
.

6. Integral Operators

In this section, we consider integral transforms of functions in the
class Mp(α, β, T ) of the type considered by Goel and Sohi [7] .

Theorem 6.1. Let the function f ∈ Σp given by (1) is in the class
Mp(α, β, T ).Then the integral operator

(20) F (z) = c

∫ 1

0
ucf (uz) du, ........(0 < u ≤ 1, 0 < c < ∞)

is in Mp(ρ, β, T ), where

ρ = 1− (1− α)(1 + 2β) + c

(1 + α− 2αβ)(c+ 2) + (1− α)(1− 2β)

The result is sharp for the function

f(z) =
1

z
+

(1− α)(µ+ 2)

(1 + α− 2αβ)µ
z
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Proof. Let f ∈ Σp given by (1) is in the class Mp(α, β, T ).Then

F (z) = c

∫ 1

0
ucf (uz) du

=
1

z
+

∞∑

n=1

c

c+ n+ 1
anz

n(21)

We have to show that

(22)
∞∑

n=1

c [n+ ρ− ρβ(n+ 1)]L(n, µ)

(1− ρ)(c+ n+ 1)
an ≤ 1.

Since f ∈ Mp(α, β, T ),we have
∞∑

n=1

[n+ α− αβ(n+ 1)]L(n, µ)

1− α
an ≤ 1,

The inequality (22) satisfied if

c [n+ ρ− ρβ(n+ 1)]

(1− ρ)(c+ n+ 1)
≤ [n+ α− αβ(n+ 1)]

1− α

Then we get

ρ ≤ [n+ α− αβ(n+ 1)](n+ c+ 1)− (1− α)cn

[n+ α− αβ(n+ 1)](n+ c+ 1) + c(1− α)(1− β(n+ 1))

= 1− (1− α)[1 + β(n+ 1)] + cn

[n+ α− αβ(n+ 1)](n+ c+ 1) + c(1− α)[1− β(n+ 1)]

Since

φ(n) = 1− (1− α)[1 + β(n+ 1)] + cn

[n+ α− αβ(n+ 1)](n+ c+ 1) + c(1− α)[1− β(n+ 1)]

is an increasing function of n(n ≥ 1) we obtain the desired result.
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