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ABSTRACT. In this paper, we introduce and study a new subclass of p-valent harmonic
functions defined by modified operator and obtain the basic properties such as coeffi-
cient characterization, distortion properties, extreme points, convolution properties, con-
vex combination and also we apply integral operator for this class.

1. Introduction

Harmonic mappings have found several applications in many diverse fields such
as operations research, engineering, and other allied branches of applied mathemat-
ics. A continous function f = u+iv is a complex-valued harmonic function in a
complex domain C if both u and v are real harmonic in D. In any simply connected
domain D C C, we can write

(1.1) f(z) = h(z) + 9(2),

where h and g are analytic in D. We call h the analytic part and g the co-analytic
part of f. A necessary and sufficient condition for f to be locally univalent and
sense preserving in D is that |h/'(z)| > |¢'(2)| in D (see [5]). Recently, Jahangiri
and Ahuja [9] defined the class 3(, (p € N={1,2,3,...}), consisting of all p—valent
harmonic functions f = h + ¢ that are sense preserving in the open unit disk
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U={z:|z| <1}, and h, g are of the form:
(1.2) hz)=2"+ > a2% g(z) =) b2" |l <1
k>p+1 k>p

If g = 0, the harmonic function f = h+ g reduces to an analytic function f = h.
Let 3, denote the subclass of },, consisting of functions f, = h + g, such that h
and g, given by:

(1.3) h(z) =2+ Z a, 2", gu(z) = Zb z%, |by| < 1.

k>pt+1 k>p
The class H{; = J{ of harmonic univalent functions studied by Jahangiri et al.
[10] (see also [6], [12]). For complex parameters o, ...,aq and B1, ..., 8s (B ¢ Z, =
{0,-1,-2,..}, j=1,2,...s),n € Ny = NU{0}, N = {1,2,..}, £,A > 0, the
operator [ ; nsa(@1)f(z) is defined as follows (see El-Ashwah and Aouf [8]):
(14) I (00 () = I y(@)h(z) + ()L y(an)g(2),

+ A (k +{
(1.5) I";S y(on =2P + Z <p_~_€p)) Ly (on)agz",
k>p+1 p

10 s = (0 Y (PRSI gt

i>p p+Y

where

(1.7) Th(ay) = (a1 Ii—p“'(aq)k—p

and (0), is the Pochhammer symbol defined, in terms of the Gamma function I", by

Ls)  (0), = ”1?(;)) _ {

1, if (v=0;0eC* =C\{0}),
00+1)..0+v—1) (veN;0eC).

For 1 < v < 2, and for all z € U, let H, 4 s(n, ¢, A, a1,7) denote the family of
harmonic p—valent functions f = h + g where h and g of the form (1.2) such that

i d Dsal0)h() + ()L (0a)g(2)

zp

(1.9) <7,

Let 3, , (n,¢, A, a1,7) be the subclass of 3(;, 4 s(n, £, X, a1,7) consisting of har-

monic functions f, = h + g, so that h and g,, given by (1.3).
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We note that by the special choices of a; (i = 1,2,...,¢) and §; (j =
1,2,...,5),n,¢ and A our class H n,l, A\, a1,7) gives rise the following new sub-
classes of the class 3(,, :

(i) Forp=1,¢g=s+1l,as =10 =1,...,s+1),8, =1( =1,2,...,s), we get
j{l_,s—i-l,s(n’ l, )‘70‘1’7) = }fl_(n7£7 /\’7)

- {f X 8‘%{["()‘7£)h(z) + (—1)n1n()\,£)gn(z)} .

Z:q,S(

z

1<y <24 X>0,neNy,zeU}

where I™ (), ¢) is the modified Cata’s operator (see [14]).
(i) Forp=1, A=1¢=0,¢g=s+1la =10 =1,...,s+1),8 =1 =
1,2,...,8), we get Iy 1y ((n,0,1,a1,7) = H; (n,7)

D" —1)»Dn
:{fEU‘C:%{ h(2)+(z) gn(z)}<’y,1<7<2,nEN0,z€U},

where D™ is the modified Salagean operator (see [11]), the differential opertor
D™ was introduced by Salagean (see [15]);

(i) Forp=1, A=1/¢=1 ¢g=s+1la;, =1 =1,...,s+1),8, =1 =
L,2,...,8), we get H; oy (0,1, 1,00,7) = Hy (n,7)

= {f eK: %{I"h(z) + (_1)nlng”(z)} <7, 1l<y<?2,

z

neZ={0,+1,42,...} ,2 € U},

where I™ is the modified Uralegaddi-Somanatha operator (see [16]), defined as fol-
lows:

I"f(z) = I"h(z) + (=1)" 1" gn(2).
(iv)Forp=1, A=1, ¢g=s+1, s =10i=1,...,5s+1),8 =1(j=1,2,..,5), we
get Hy o1 (0,0 1 a1,y) = Hy (n, 4, )

Imh —1)"Irg,
:{fe}C: afe{f (2)+(=1) fg(z)}<v,1<v<2,neR,£>—1,zeU},

z
where I} is the modified Cho-Kim operator [3] (also see [4]), defined as follows:

17 f(2) = I h(z) + (=1)" I} gn(2).

(V) FOI‘p:]_7 £:O’ q:s+17ai: 1(121778+1)a6] =1 (]: 1,2,...,8),We
get }Cis+1,s(n707>\aa177) = }C;(n, )\7’)/)

DTh “1)"Dtg,
:{fefH:?R{ 3h(z) + (=) Ag('z)}<7,1<7<2,Azo,neNO,zeU},

z
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where DY is the modified Al-Oboudi operator (see [1]), defined as follows:

A (2) = DXh(2) + (=1)" DX gn(2).

2. Coefficient Characterization

Unless otherwise mentioned, we assume throughout this article that 1 < v <
2,0>—p, peN, A >0, n €Ny and I'y(aq) is given by (1.7). In our first theorem,
we introduce a sufficient condition for the coefficient bounds of harmonic functions
in Hpqs(n, 0, A 01,7).

Theorem 2.1. Let f = h+ G where h and g are of the form (1.2). Then f €
:prqys(nvgvAaalv'Y) if

5 (pH(k—p)H) i )ax

k>p+1 p+l

+A(k +/
(2.1) “‘Z (pp—wp)> Tk (a1)be| <v—1
k>p

where a, = 1.

Proof. Using the fact that R {w(z)} < v iff jw(z) — 1] < |w(z) — (2y — 1), it suffices
to show that

L oalan)h(z) + (=0)rL s (an)g(2)

-1
20 <1.
n, 4 n, Ll
Ip,q,é )\( )h(z) + (71)’”4[[)7(]7.5 )\( )g(Z) _ (2 - 1)
zP v
We have
n, 4 n, 4
Iy sale)h(z) + (=)L, o\ (a1)g(z) .
zp
n, 4 n, 4
Lygsalen)h(z) + (=075 s (en)g(z) o1
(2y-1)
zP
pHA(k—p)+L\" k—p
5, () e
_1\n pHAk—p)+£\" -
+(=1) kgp (7,;“ ) [p(aq)bpzh—P
| oy pEAG—p)+£ )" kp
2(y 1)+k2§+1( =, ) Tk(a)agz
n FAk—p)+£\" PR
+(=1) gp (%) Iy (cn)brzh—P
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+A(k—p)+£\" _
() In(an)an] |47
Zp

+ZU”“W)MWMWHW

<
[2(7 -1)— kgpjﬂ (W%W)" T )ag| | 2577
- ,gp (Hkg%fw)n T (1) | |ka|1
kEprl <%W>n ITre(a)ax|
+k,z>:p (%)n |Fk(a1)bk]
< = ,

- b

[Qw —1 - 3 (PR T (o ay

k>p+1

—E@ﬂﬁ“)mwm]

k>p

which is bounded above by 1 by using (2.1). This completes the proof of Theorem
2.1. |

Theorem 2.2. Let f, = h + g, where h and g, are of the form (1.3). Then
fn € 3, s(n 0, N a1, 7) if and only if

3 (p—i—A(l-{;—p)—i—E)" D% (e )al

k>pt1 P+t
+ A (k +/
(2.2) + Z (pp—i_gp)> Tk (an)be| <v—1
k>p

where ap = 1.
Proof Since H,, , ((n, 4, A, a1,7) C Hpq.s(n, €, A, a1,7), we only need to prove the
"only if” part of this theorem. For functions f,,(z) of the form (1.3), the condition

o ) Digan(@)h() + GO Ly (@0)g.(2)

<7

is equivalent to

1+ Z (IMW) Fk(al)akzk_p

k>p+1 p + ¢

655
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son 3 (PRI o

p+A(k—p)+L\" _
<1t ) (p+e) Pu(an)ax] |77

p+Ak—p) +£\" Ty ——
+ <p+€ T ()i [27P] < .

Letting 2z — 17, we obtain the inequality (2.1), and so the proof of Theorem 2.2
is completed. O

Remark 2.1.

) Ip=1lg=s+la=1¢=1,..,s+1)and 3; =1(j =1,2,...,5) in
Theorem 2.2, then we get the result obtained by Mostafa et al. [14, Theorem
2].

I A=1L=0p=1Lg=s+1loy=10=1,...,s+1),8 =1 =

1,2,...,s) and n = 1, in Theorem 2.2, then we get the result obtained by
Dixit and Porwal [7, Theorem 2.1].

3. Extreme Points and Distortion Theorem

In the following theorem we give the extreme points of the closed convex hulls
of the class H , .(n, £, A\, a1,7) denoted by cleoF . . (n, 4, A, a1,7).

P,q;S D,q,8
Theorem 3.1.  Let f, = h + g, where h and g, are of the form (1.8). Then

fn €clco, , (n, €, X\ a1,7) if and only if

(3.1) Fn(2) =D phi(2) + igr, (2),
k>p

where

(3.2) hyp(z) = 27,

o, (=1 (p+90) "

(3.4) g, (2):= 2P+ (—1)" (=1 [ (r+90

z¢ (k>p,neN
[Tk ()] P-l—)\(k—p)—k(} (k=p 0)

sk 20, iy =1— " =Y e

k>p+1 k=>p
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In particular, the extreme points of the class 3, , (n, €, A, c1,7) are {hg(2)} and {gx, ()} .

Proof. Suppose that
Fn(2) =D (urhi(2) + igr, (2))

k>p

= 2P (v—1) (p+10) n p
: +k§m INICEY] [p+A(k;_p)+A i

N~ (=D (p+0) "
*“*)Z;Fan{p+A@—m+w]"“@

Then

[P+ A(k—p) + " [Ty(a)| (y-Dp+g"
k;pﬂ v =Dp+4" ( P+ A= p) + 0" [x(an)]” )

[P+ Ak —p) + 0" Tk(c)| (v =Dp+a"
+kzzp (v=1p+" ( p+Ak—p)+0" |rk(a1)|77’“>

= Z u;ﬁan:lfupSl

k>p+1 k>p
and so f, € cleod(, , ((n,¢, A, a1,7).
Conversely, if f, € cleod(, , (n,?, A, a1,7). Set
LTS TS YIS
and
b Dol e A=)+,

(y=Dp+4g"
Then note that by Theorem 2.2, 0 < pup < 1, (k>p+1), and 0 < 7 <

1, (k>p).Let pup=1— > pr— > nxand u, > 0.
k>p+1 k>p

The required representation is obtained as

fo(z) =27 4+ Z apz® + (=1)" Z biz*

k>p+1 k>p

=P 4 Z (v=-Dp+0"

k
P+ Ak —p) + 4" [Tr(an)] ™

k>p+1

+(_1)nz (7_ 1) [p+£]n k

n NkZ
2ot Ak —p) + " [Tx(on)]
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=4 3 () =+ Y (9n() — )

k>p+1 k>p
= (1= > me=D |+ D (e + Y (9r(2) me
k>p+1 k>p k>p+1 k>p
= Z (el (2) + negr(2)) -
k2p
This completes the proof of Theorem 3.1. O

The following theorem gives the distortion bounds for functions in the class

H n,l, \, a1,v) which yields a covering result for this class.

pqS(

Theorem 3.2. Let f, € H

oas (Ml A, y) with |by| < v —1. Then for |z| =r
< 1, we have

p+ 4"
|Fp+1(041)‘ P+ A+¢

(1= 1[bpl) 1" = B {v = 1= o[} 7" < |fu(2)]

p+4"

(3.5) < (L+[bpl) P + Tp+1(ar)|[p+ A+

B {v =1 [bpl}rP*

Proof. Let fn(z) € H

o5 (M 4 A aq, 7). Taking the absolute value of f,,(2) we have

()< @10+ D7 Hlaw] + [bel]r* < (L4 o) r? 4077 Y [lak] + |bk]

k>p+1 k>p+1
=D +q" 1 p+A+€ Tps1(q)]
= (1+|by|) P+ rPt - ar| + |b
( | Pl) [p+)\+€] |Fp+1 al k>zp;1 — 1 p_|_€] [| kl | k”
(v=1p+4" [p+/\k p) +4"
< (1+ |by)) 1P+ Tk (a)a]
p [p —+ )\ —+ (] ‘Ferl a1 k;l [p + 4 !

p+)\k p)+£]

7P ('7_1)[p+g]n _ |0 ppt1
<)+ S o) {1 - 1>}

p+ "

= (14 1|by|) P + 7
L P S LT R P |

{v—=1—Ipp[}r7*".
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Similarly we can prove

TR O e iy v SR R SN

Remark 2.2. The bounds given in Theorem 3.2 for functions f,, = h + g, where
h and g, are given by (1.3), also hold for functions of the form f = h + g, where
h and g are given by (1.2) if the coefficient condition (2.1) is satisfied. The upper
bound given for f(z) € H,, .(n, £, A\, a1,7) is sharp and the equality occurs for the
functions

lp+4"

(36)  f(z) =2+ [bplZ" + Tpri(an)[p+ A+ 4

B {v =1 Ibpl} 2

and

p+4"
Tpti(ca)|[p+ A+ 2

B7  f(2)=2" = bz - T {v =1 Ibpl} 2",

showing that the bounds given in Theorem 3.2 are sharp.

4. Closure Property of the Class H; . (n,¢, A\, a1,7)

P,q, 9(

In the next two theorems, we prove that the class 3, <(n, 0, X\ aq, ) is invariant
under convolution and convex combinations of its members. The convolution of two
harmonic functions,

(4.1) z) =2 + Z apz® + ( Zbk )

k>p+1 k>p

and

(4.2) Fu(z) =22+ > A"+ (-1)") B7",
k>p+1 k>p

is defined as

43)  (faxF)(2) = (Fax fa)(2) =27 + ) apdiz® + (=1)" ) _bpBiz".

k>p+1 k>p
Using this definition, the next theorem shows that the class J

P,q, S(
closed under convolution.

Theorem 4.1. For 1 < g <y <2, Let f, € H
H n,l, A\, a1, 8). Then

n, A, ar,7) is

pqs(n7€,>\,a1,’y) and F,, €

pqS(

foxF,eXH n,l, A\ a1,7) CH

pqs(

n7€a)‘7a176)'

pqs(

659
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Proof. Let the functions f,,(2) defined by (4.1) be in ¥, (n,£, A, a1,7) and the
functions F,(z) defined by (4.2) be in H, (n,¢, A\, a1, 3). Then the convolution
fnx Fy, is given by (4.3). We wish to show that the coefficients of f,, * F,, satisfy the
required condition given in Theorem 2.2. For F,(z) € 3, , .(n, £, A, a1, B), we note
that |Ax| < 1 and |By| < 1. Now for the convolution function f, * F),, we obtain

1 Ak — AN
> ot (P a1

RS <W> ITs ()i | | By

< 2 e (P e

p+/4

N e

Z 1 <p+)\(k—p) +£)" T (e )a]

7k>p+1’y_1 p+t

+> (ZMW> Tk (1) by

k>p p+£

<1,

since ]l < <y <2 and f, e K

sl a1, 7). O

Now, we show that the class 3(,, (
nation of its members.
Theorem 4.2. The family H
tion.

Proof. Fori =1, 2, 3, ..., suppose f,, € H;

n,l, \, aq,7) is closed under convex combi-

pa.s(M A a1,7) s closed under conver combina-

(n, €, A\, a1,7), where f,, is given by

.45
fn;(2) =2 + Z ar, 2 + ( Zbkz
k>p+1 k>p
Then by (2.2), we have
1 p+A(k—p)+\"
4.4 r v
(14 > (7_1)( EDE) ryanan,

k>p+1

+Z <p+/\(k_p)+€)n|rk(a1)bkl|Sl-

k>p p+£
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o0
For > t; =1, 0 <t; <1, the convex combination of f,, may be written as
i=1

(4.5) thl—zp-i- > (itak> 2P 4 (- Z(thk>

E>p+1 \i=1 k>p

Using the inequality (4.4), we have

1 p+A(k—p)+ ¢
2 (71)( p+e ) Tile) (

k>p+1
1 p+>\(k—p)+£)" >

+X s P(a)] i

= 0 -1) p+1 P

= 1 +A(kE—p)+\"
=S| ¥ o (P e

i=1 k>p+1 v p

1 p+>\(kp)+£>”
I D) b
= 0= p+L
<y ti=1,
=1
which is the required coefficient condition. O

Finally, we examine the closure property of the class 3, <, 0 A aq,y) un-

der the generalized Bernardi-Libera-Livingston integral operator (see [2, 13]),
I.(f) which is defined by,

(4.6) L(f) = C“’/z L ()dt, ¢ > —p.

z¢ 0

Theorem 4.3. Let f,(z) € H n, A\, a1,7). Then

pqs(

Lo (fn(2)) € Hp g (s A 01, 7).

Proof. From the representation of I.. (f,(z)), it follows that

L) = 2 [t o S a4 1Y btk at

ZC
k>p+1 k>p
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=P+ Z Pr2F + ( Z\Ilkzk

k>p+1 k>p

c+p c+p
P = U, =
k (C+/€) Qg and k (C—i—k)bk

Therefore, we have

3 (er)‘(kW> |Fk(a1)||@k|+z<p+)\(kp)+£) Tk ()| [Wi|

where

k>pt1 ptt k>p ptt
+ A (k—p)+L\" c+
= Z <p(_|_€p)) Fk(m)'(mﬁ) |a|
k>pt1 b
p+Ak—p) +0\" c+p
FTAWTE)TE2) p halil
+kz( L Pe(an)l (2 i

p+)\(k—p)+€> p+A(k—p)+£\"
<> ( IDr(an)lJar| + > [ —————] [Ti(ar)] |bx|
k>p+1 P+t k>p P+t

<(y-=1) by (2.2).

Hence by Theorem 2.2, I.. (fn(2)) € 3, , (0,4, A, a1,7). O
Acknowledgements. The authors wish to acknowledge and thank both the re-

viewers and editors for job well-done reviewing this article.
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