References
- M. D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, thesis, Univ. of Minnesota, Minneapolis, 1972
- R. H. Cameron, The first variation of an indefinite Wiener intergal, Proc. Amer. Math. Soc. 2 (1951), 914-924
-
R. H. Cameron and D. A. Storvick, An
$L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30 https://doi.org/10.1307/mmj/1029001617 - R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, An analytic functions, Lecture Notes in Math. 798 (1980), 18-27 https://doi.org/10.1007/BFb0097256
- K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, Conditional Fourier-Feynman transform and convolution product over Wiener paths in ab- stract Wiener space, Integral Transform. Spec. Funct. 14 (2003), no. 3, 217-235 https://doi.org/10.1080/1065246031000081652
- K. S. Chang, D. H. Cho, and I. Yoo, A conditional analytic Feynman integral over Wiener paths in abstract Wiener space, Int. Math. J. 2 (2002), no. 9, 855-870
- K. S. Chang, D. H. Cho, and I. Yoo, Evaluation formulas for a conditional Feynman integral over Wiener paths in abstract Wiener space, Czechoslovak Math. J. 54 (2004), no. 129, 161- 180 https://doi.org/10.1023/B:CMAJ.0000027256.06816.1a
- K. S. Chang, T. S. Song and I. Yoo, Analytic Fourier-Feynman transform and first variation on abstract Wiener space, J. Korean Math. Soc. 38 (2001), no. 2, 485-501
-
D. H. Cho, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space : an
$L_p$ theory, J. Korean Math. Soc. 41 (2004), no. 2, 265-294 https://doi.org/10.4134/JKMS.2004.41.2.265 - D. H. Cho, Conditional first variation over Wiener paths in abstract Wiener space, J. Korean Math. Soc. 42 (2005), no. 5, 1031-1056 https://doi.org/10.4134/JKMS.2005.42.5.1031
- D. H. Cho, Fourier-Feynman transform and first variation of cylinder type functions over Wiener paths in abstract Wiener space, Int. Math. J. (2005), to appear
- G. B. Folland, Real analysis, John Wiley & Sons, 1984
- G. W. Johnson and D. L. Skoug, An Lp analytic Fourier-Feynman transform, Michigan Math. J. 26 (1979), 103-127 https://doi.org/10.1307/mmj/1029002166
- G. Kallianpur and C. Bromley, Generalized Feynman integrals using an analytic continuation in several complex variables, Stochastic Analysis and Applications, Dekker, 1984
- J. Kuelbs, Abstract Wiener measure and applications to analysis, Pacific J. Math. 31 (1969), no. 2, 433-450 https://doi.org/10.2140/pjm.1969.31.433
- H. H. Kuo, Gaussian measures in Banach spaces, Lecture Notes in Mathematics, Vol. 463. Springer-Verlag, Berlin-New York, 1975
- C. Park, D. L. Skoug, and D. A. Storvick, Fourier-Feynman transfroms and the first variation, Rend. Circ. Mat. Palermo 47 (1998), no. 2, 277-292 https://doi.org/10.1007/BF02844368
- K. S. Ryu, The Wiener integral over paths in abstract Wiener space, J. Korean Math. Soc. 29 (1992), no. 2, 317-331
- I. Yoo, The analytic Feynman integral over paths in abstract Wiener space, Com- mun. Korean Math. Soc. 10 (1995), no. 1, 93-107
Cited by
- A TRANSLATION THEOREM FOR THE GENERALIZED FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PROCESS ON FUNCTION SPACE vol.53, pp.5, 2016, https://doi.org/10.4134/JKMS.j150317