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Abstract. For a sufficiently adequate special case of the Dziok-Srivastava linear opera-

tor defined by means of the Hadamard product (or convolution) with Srivastava-Wright

convolution operator, the authors investigate several mapping properties involving various

subclasses of analytic and univalent functions, G(λ, α) and M(λ, α). Furthermore we dis-

cuss some inclusion relations for these subclasses to be in the classes of k-uniformly convex

and k-starlike functions.

1. Introduction

Let H be the class of functions analytic in the unit disk U = {z ∈ C : |z| < 1}.
Let A be the class of functions f ∈ H of the form

(1.1) f(z) = z +
∞∑

n=2

anzn z ∈ U.

As usual, we denote by S the subclass of A consisting of functions which are nor-
malized by f(0) = 0 = f ′(0)− 1 and also univalent in U. Denote by T the subclass
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of A consisting of functions of the form

(1.2) f(z) = z −
∞∑

n=2

anzn, an > 0.

A function f ∈ A is said to be starlike of order α (0 ≤ α < 1), if and only
if < (zf ′(z)/f(z)) > α (z ∈ U). This function class is denoted by S∗(α). We
also write S∗(0) =: S∗, where S∗ denotes the class of functions f ∈ A that f(U) is
starlike with respect to the origin. A function f ∈ A is said to be convex of order α
(0 ≤ α < 1) if and only if < (1 + zf ′′(z)/f ′(z)) > α (z ∈ U). This class is denoted
by K(α). Further, K = K(0), the well-known standard class of convex functions. It
is an established fact that f ∈ K(α) ⇐⇒ zf ′ ∈ S∗(α).

Furthermore, we denote by k − UCV and k − ST, (0 ≤ k < ∞), two interesting
subclasses of S consisting respectively of functions which are k-uniformly convex
and k-starlike in U. Namely, we have for 0 ≤ k < ∞

k − UCV :=
{

f ∈ S : <
(

1 +
zf ′′(z)
f ′(z)

)
> k

∣∣∣∣
zf ′′(z)
f ′(z)

∣∣∣∣ , (z ∈ U)
}

and

k − ST :=
{

f ∈ S : <
(

zf ′(z)
f(z)

)
> k

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ , (z ∈ U)

}
.

The class 1− UCV was defined and discussed by Goodman [7]. Further the classes
k−UCV and k−ST were introduced and its geometric definitions, connections with
the conic domains were investigated in [11, 12].

The Gaussian hypergeometric function F (a, b; c, z) given by

(1.3) F (a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n(1)n
zn (z ∈ U)

is the solution of the homogenous hypergeometric differential equation

z(1− z)w′′(z) + [c− (a + b + 1)z]w′(z)− abw(z) = 0

and has rich applications in various fields such as conformal mappings, quasi con-
formal theory, continued fractions, and so on. Here, a, b, c are complex numbers
such that c 6= 0,−1,−2,−3, . . . , (a)0 = 1 for a 6= 0, and for each positive integer
n, (a)n = a(a + 1)(a + 2) . . . (a + n − 1) is the Pochhammer symbol. In the case
of c = −k, k = 0, 1, 2, . . . , the function F (a, b; c; z) is defined if a = −j or b = −j
where j ≤ k. We refer to [2, 14] and references therein for some important results.

Also for functions f ∈ A given by (1.1) and g ∈ A given by g(z) = z +∑∞
n=2 bnzn, we define the Hadamard product (or convolution) of f and g by

(1.4) (f ∗ g)(z) = z +
∞∑

n=2

anbnzn, z ∈ U.
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In terms of the Hadamard product (or convolution), the Dziok-Srivastava lin-
ear operator involving the generalized hypergeometric function, was introduced and
studied systematically by Dziok and Srivastava [6, 5] and (subsequently) by many
other authors. Here, in our present investigation, we recall a familiar convolu-
tion operator Ia,b,c due to Hohlov [8], which indeed is a very specialized case of
the widely- (and extensively-) investigated Dziok-Srivastava operator. For f ∈ A,
we recall the operator Ia,b,c(f) of which maps A into itself defined by means of
Hadamard product as

(1.5) Ia,b,c(f)(z) = zF (a, b; c; z) ∗ f(z).

Therefore, for a function f defined by (1.1), we have

(1.6) Ia,b,c(f)(z) = z +
∞∑

n=2

(a)n−1(b)n−1

(c)n−1(1)n−1
anzn.

The Hohlov operator Ia,b,c (which has been emphasized upon in this paper) is a
very specialized case of the Dziok-Srivastava linear operator [5, 6] which, in turn, is
contained in the Srivastava-Wright convolution operator [15] (see also [9]). It is the
Srivastava-Wright convolution operator [15] (see also [9]) that is defined by using
the Fox-Wright generalized hypergeometric function.

Using the integral representation,

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1 dt

(1− tz)a
,<(c) > <(b) > 0,

we can write

Ia,b,c(f)(z) =
(

Γ(c)
Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1 f(tz)
t

dt

)
∗ z

(1− tz)a
.

When f(z) equals the convex function z/(1− z), then the operator Ia,b,c(f) in
this case becomes zF (a, b; c; z). If a = 1, b = 1 + δ, c = 2 + δ with <(δ) > −1, then
the convolution operator Ia,b,c(f) turns into Bernardi operator

Bf (z) = Ia,b,c(f)(z) =
1 + δ

zδ

∫ 1

0

tδ−1f(t)dt.

Indeed, I1,1,2(f) and I1,2,3(f) are known as Alexander and Libera operators,
respectively.

Let us denote (see [11], [12])

(1.7) P1(k) =





8(arccosk)2

π2(1−k2) for 0 ≤ k < 1,

8/π2 for k = 1,
π2

4
√

t(1+t)(k2−1)K2(t)
for k > 1,
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where t ∈ (0, 1) is determined by k = cosh(πK ′(t)/[4K(t)]), K is the Legendre’s
complete Elliptic integral of the first kind

K(t) =
∫ 1

0

dx√
(1− x2)(1− t2x2)

and K ′(t) = K(
√

1− t2) is the complementary integral of K(t). Let Ωk be a domain
such that 1 ∈ Ωk and

∂Ωk =
{
w = u + iv : u2 = k2(u− 1)2 + k2v2

}
, 0 ≤ k < ∞.

The domain Ωk is elliptic for k > 1, hyperbolic when 0 < k < 1, parabolic when
k = 1, and a right half-plane when k = 0. If p is an analytic function with p(0) = 1
which maps the unit disc U conformally onto the region Ωk, then P1(k) = p′(0).
P1(k) is strictly decreasing function of the variable k and it values are included in
the interval (0, 2].

Let f ∈ A be of the form (1.1). If f ∈ k − UCV, then the following coefficient
inequalities hold true (cf. [11]):

(1.8) |an| ≤ (P1(k))n−1

n!
, n ∈ N \ {1}.

Similarly, if f of the form (1.1) belongs to the class k − ST, then (cf., [12])

(1.9) |an| ≤ (P1(k))n−1

(n− 1)!
, n ∈ N \ {1}.

A function f ∈ A is said to be in the class Rτ (A,B), (τ ∈ C\{0}, −1 ≤ B <
A ≤ 1), if it satisfies the inequality

∣∣∣∣
f ′(z)− 1

(A−B)τ −B[f ′(z)− 1]

∣∣∣∣ < 1 (z ∈ U).

The class Rτ (A,B) was introduced earlier by Dixit and Pal [4]. Two of the
many interesting subclasses of the class Rτ (A,B) are worthy of mention here. First
of all, by setting

τ = eiη cos η (−π/2 < η < π/2), A = 1− 2β (0 ≤ β < 1) and B = −1,

the class Rτ (A,B) reduces essentially to the class Rη(β) introduced and studied by
Ponnusamy and Rønning [14], where

Rη(β) =
{
f ∈ A : <(eiη(f ′(z)− β)) > 0 z ∈ U}

.

Secondly, if we put

τ = 1, A = β and B = −β (0 < β ≤ 1),
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we obtain the class of functions f ∈ A satisfying the inequality
∣∣∣∣
f ′(z)− 1
f ′(z) + 1

∣∣∣∣ < β, z ∈ U

which was studied by (among others) Padmanabhan [13] and Caplinger and Causey
[3].

Motivated by the earlier work of Srivastava et al. [16], in this paper we introduce
two new subclasses of S namely G(λ, α) and M(λ, α) to obtain coefficient bounds
and to discuss some inclusion properties involving Hohlov operator.

For some α(0 ≤ α < 1) and λ(0 ≤ λ < 1), we let G(λ, α) and M(λ, α) be two
new subclass of S consisting of functions of the form (1.1) satisfying the analytic
criteria

(1.10) G(λ, α) :=
{

f ∈ S : <
(

(1− λ)f(z)
zf ′(z)

+ λ

)
> α, z ∈ U

}
,

(1.11) M(λ, α) :=
{

f ∈ S : <
(

f ′(z) + λzf ′′(z)
f ′(z) + zf ′′(z)

)
> α, z ∈ U

}
.

Also denote G∗(λ, α) = G(λ, α)∩T and M∗(λ, α) = M(λ, α)∩T, the subclasses
of T defined in (1.2).

2. Coefficient Bounds

In his section, we obtain the necessary and sufficient conditions for functions
f ∈ G(λ, α) and f ∈ M(λ, α).

Lemma 2.1. A function f ∈ A of the form (1.1) belongs to the class G(λ, α) if
f(z)/(zf ′(z)) ∈ H and if

(2.3)
∞∑

n=2

(1 + nλ− λ− αn)|an| ≤ 1− α.

Proof. It is suffices to show that the values for (1−λ)f(z)
zf ′(z) + λ lie in a circle centered

at ω = 1 whose radius is 1− α. We have
∣∣∣∣
(1− λ)f(z)

zf ′(z)
+ (λ− 1)

∣∣∣∣ = |
∑∞

n=2(1− λ + nλ− n)anzn

z +
∑∞

n=2 nanzn
|

≤
∑∞

n=2(1− λ + nλ− n)|an||zn−1|
1−∑∞

n=2 n|an||zn−1|

≤
∑∞

n=2(1− λ + nλ− n)|an|
1−∑∞

n=2 n|an| .(2.4)
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The last expression is bounded above by 1− α if

(2.5)
∞∑

n=2

(1− λ + nλ− n)|an| ≤ (1− α)(1−
∞∑

n=2

n|an|),

which is equivalent to

(2.6)
∞∑

n=2

(1 + nλ− λ− αn)|an| ≤ 1− α.

But (2.6) is true by hypothesis. Hence

(2.7)
∣∣∣∣
(1− λ)f(z)

zf ′(z)
+ (λ− 1)

∣∣∣∣ ≤ 1− α

and the theorem is proved.

Corollary 2.2. A function f ∈ A of the form (1.1) belongs to the class M(λ, α) if
f(z)/(zf ′(z)) ∈ H and if

∞∑
n=2

n(1 + nλ− λ− αn)|an| ≤ 1− α.

Proof. It is well known that f ∈ M(λ, α) if and only if zf
′ ∈ G(λ, α). Since

zf
′
= z +

∑∞
n=2 nanzn we may replace an with nan in Lemma 2.1. For functions

in T the converse of Lemma 2.1 is also true.

Lemma 2.3. A function f ∈ T belongs to the class G∗(λ, α) if and only if
f(z)/(zf ′(z)) ∈ H and if

∞∑
n=2

(1 + nλ− λ− αn)|an| ≤ 1− α.

Proof. In view of Lemma(2.1), it suffices to show the only if part. Assume that

(2.8)

<
(

(1− λ)f(z)
zf ′(z)

+ λ

)
= <

{
z −∑∞

n=2((1− λ) + nλ)anzn−1

z −∑∞
n=2 nanzn−1

}
> α, (|z| < 1).

Choose values of z on the real axis so that
(

(1−λ)f(z)
zf ′(z) + λ

)
is real. Upon clearing

the denominator in (2.8) and letting z → 1 through real values, we obtain

(2.9) 1−
∞∑

n=2

(1− λ + nλ)|an| ≥ α(1−
∞∑

n=2

n|an|).

Thus
∑∞

n=2(1 + nλ− λ− αn)|an| ≤ 1− α, and the proof is complete.
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Corollary 2.4. A function f ∈ T of the form (1.1) belongs to the class M∗(λ, α)
if and only if f(z)/(zf ′(z)) ∈ H and

∞∑
n=2

n(1 + nλ− λ− αn)|an| ≤ 1− α.

3. Inclusion Properties

Making use of the following lemma, we will study the action of the hypergeo-
metric function on the classes k − UCV, k − ST.

Lemma 3.5. [4] If f ∈ Rτ (A,B) is of form (1.1), then

(3.4) |an| ≤ (A−B)
|τ |
n

, n ∈ N \ {1}.

The result is sharp.

Theorem 3.6. Let a, b ∈ C \ {0}, |a| 6= 1, |b| 6= 1. Also, let c be a real number
such that c > |a| + |b| + 1. If f ∈ Rτ (A,B), Ia, b, c(f)/(zI ′a, b, c(f)) ∈ H and if the
inequality

Γ(c)Γ(c− |a| − |b| − 1)
Γ(c− |a|)Γ(c− |b|)

[
(λ− α)(c− |a| − |b| − 1) +

(1− λ)
(|a| − 1)(|b| − 1)

]

(3.5) ≤ (1−α)
(

1
(A−B)|τ | + 1

)
+ (1− λ)

c− 1
(|a| − 1)(|b| − 1)

is satisfied, then Ia, b, c(f) ∈ G(λ, α).

Proof. Let f be of the form (1.1) belong to the class Rτ (A,B). By virtue of Lemma
2.1, it suffices to show that

∞∑
n=2

(1 + nλ− λ− nα)
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣ ≤ 1− α.

Taking into account the inequality (3.4) and the relation |(a)n−1| ≤ (|a|)n−1,
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we deduce that

∞∑
n=2

(1 + nλ− λ− nα)
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣

≤ (A−B)|τ |(λ− α)
∞∑

n=2

∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1

∣∣∣∣

+ (A−B)|τ |(1− λ)
∞∑

n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n

≤ (A−B)|τ |{
(λ− α)

∞∑
n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n−1
+

(c− 1)(1− λ)
(|a| − 1)(|b| − 1)

∞∑
n=2

(|a| − 1)n(|b| − 1)n

(c− 1)n(1)n

}

= (λ− α)(A−B)|τ | (F (|a|, |b|, c; 1)− 1)

+ (A−B)|τ |(1− λ)
(c− 1)

(|a| − 1)(|b| − 1)(
F (|a| − 1, |b| − 1, c− 1; 1)− (|a| − 1)(|b| − 1)

c− 1
− 1

)
,

where we use the relation

(3.6) (a)n = a(a + 1)n−1.

The proof now follows by an application of Gauss summation theorem and
(3.5).

Theorem 3.7. Let a, b ∈ C\{0}, |a| 6= 1, |b| 6= 1. Also, let c be a real number such
that c > |a|+ |b|+ 2. If f ∈ S, Ia, b, c(f)/(zI ′a, b, c(f)) ∈ H and if the inequality

Γ(c)Γ(c− |a| − |b| − 1)
Γ(c− |a|)Γ(c− |b|)

[
1− α +

(λ− α)(a)2(b)2
(1− α)(c− |a| − |b| − 2)2

+
|ab|(2λ− 3α + 1)
c− |a| − |b| − 1

(c− |a| − |b| − 1)
]

≤ 2(1− α)

is satisfied, then Ia, b, c(f) ∈ G(λ, α).

Proof. Let f be of the form (1.1) belong to the class S. By virtue of Lemma 2.1, it
suffices to show that

S(a, b, c, λ, α) :=
∞∑

n=2

(1 + nλ− λ− nα)| (a)n−1(b)n−1

(c)n−1(1)n−1
an| ≤ 1− α.
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Applying the well known estimate for the coefficients of the functions f ∈ S,
due to de Branges [1], we need to show that

(3.7)
∞∑

n=2

n(1 + nλ− λ− nα)
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1

∣∣∣∣ ≤ 1− α.

Taking into account the inequality |(a)n−1| ≤ (|a|)n−1, we deduce that

S(a, b, c, λ, α) ≤
∞∑

n=2

(
n2(λ− α) + n(1− λ)

) (|a|)n−1(|b|)n−1

(c)n−1(1)n−1

writing n = (n− 1) + 1, and n2 = (n− 1)(n− 2) + 3(n− 1) + 1, we can rewrite the
above term as

S(a, b, c, λ, α) ≤ (λ− α)
∞∑

n=2

(n− 1)(n− 2)
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

+ (2λ− 3α + 1)
∞∑

n=2

(n− 1)
(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

+ (1− α)
∞∑

n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n−1
.

Repeatedly using the relation given in (3.6),

S(a, b, c, λ, α) ≤ (λ− α)
∞∑

n=3

(|a|)n−1(|b|)n−1

(c)n−1(1)n−3

+ (2λ− 3α + 1)
∞∑

n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n−2

+ (1− α)
∞∑

n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n−1
.

The inequality (3.7) now follows by applying Gauss summation theorem and by
the hypothesis.

Theorem 3.8. Let a, b ∈ C \ {0}. Also, let c be a real number and P1 = P1(k) be
given by (1.7). If f ∈ k − UCV, for some k (0 ≤ k < ∞), and the inequality

(3.8) (λ− α)3F2(|a|, |b|, P1; c, 1; 1) + (1− λ) 3F2(|a|, |b|, P1; c, 2; 1) ≤ 2(1− α)

is satisfied, then Ia, b, c(f) ∈ G(λ, α).
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Proof. Let f be given by (1.1). By (2.3), to show Ia, b, c(f) ∈ M(λ, α), it is sufficient
to prove that

(3.9)
∞∑

n=2

(1 + nλ− λ− nα)
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣ ≤ 1− α.

We will repeat the method of proving used in the proof of Theorem 1. Applying
the estimates for the coefficients given by (1.8), and making use of the relations (3.6)
and |(a)n| ≤ (|a|)n, we get

∞∑
n=2

(1 + nλ− λ− nα)
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣

≤
∞∑

n=2

[n(λ− α) + (1− λ)]
(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n

= (λ− α)
∞∑

n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1
+ (1− λ)

∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n

= (λ− α) [3F2(|a|, |b|, P1; c, 1; 1)− 1] + (1− λ) [3F2(|a|, |b|, P1; c, 2; 1)− 1]
≤ 1− α

provided the condition (3.8) is satisfied.

Theorem 3.9. Let a, b ∈ C \ {0}. Also, let c be a real number such that c >
|a|+ |b|+ 1. If f ∈ Rτ (A,B), and if the inequality

Γ(c)Γ(c− |a| − |b| − 1)
Γ(c− |a|)Γ(c− |b|) [(λ− α)|ab|+ (1− α)(c− |a| − |b| − 1)]

(3.10) ≤ (1− α)
(

1
(A−B)|τ | + 1

)

is satisfied, then Ia, b, c(f) ∈ M(λ, α).

Proof. Let f be of the form (1.1) belong to the class Rτ (A,B). By virtue of Lemma
3.6, it suffices to show that

(3.11)
∞∑

n=2

n(1 + nλ− λ− αn)
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣ ≤ 1− α.

Taking into account the inequality (3.4) and the relation |(a)n−1| ≤ (|a|)n−1,
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we deduce that
∞∑

n=2

n(1 + nλ− λ− αn)

∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣

≤ (A−B)|τ |(λ− α)

∞∑
n=2

n

∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1

∣∣∣∣ + (A−B)|τ |(1− α)

∞∑
n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n

≤ (A−B)|τ |
{

(λ− α)

∞∑
n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n−2
+ (1− α)

∞∑
n=2

(|a|)n−1(|b|)n−1

(c)n−1(1)n−1

}

= (A−B)|τ |
{

(λ− α)
|ab|
c

F (1 + |a|, 1 + |b|, 1 + c; 1) + (1− α) (F (|a|, |b|, c; 1)− 1)

}

= (A−B)|τ |
{

(λ− α)
|ab|
c

Γ(c− a− b− 1)Γ(c + 1)

Γ(c− a)Γ(c− a)

+(1− α)

{
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b)
− 1

}}

= (A−B)|τ |Γ(c− a− b− 1)Γ(c)

Γ(c− a)Γ(c− a)
{(λ− α)ab + (1− α)(c− a− b− 1)}

− (A−B)|τ |(1− α)

= (A−B)|τ |
{

(1− α)

{
1

(A−B)|τ | + 1

}}
− (A−B)|τ |(1− α)

≤ (1− α)

provided the condition (3.10) is satisfied.

Theorem 3.10. Let a, b ∈ C \ {0}. Also, let c be a real number and P1 = P1(k) be
given by (1.7). If, for some k (0 ≤ k < ∞), f ∈ k − UCV, and the inequality

(λ− α)
|ab|P1

c
3F2(1 + |a|, 1 + |b|, 1 + P1; 1 + c, 2; 1)

+ (1− α)3F2(|a|, |b|, P1; c, 1; 1)(3.12)
≤ 2(1− α)

is satisfied, then Ia, b, c(f) ∈ M(λ, α).

Proof. Let f be given by (1.1). By (2.3), to show Ia, b, c(f) ∈ M(λ, α), it is sufficient
to prove that

(3.13)
∞∑

n=2

n(1 + nλ− λ− αn)
∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣ ≤ 1− α.

We will repeat the method of proving used in the proof of the first Theorem.
Applying the estimates for the coefficients given by (1.8), and making use of the
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relations (3.6) and |(a)n| ≤ (|a|)n, we get
∞∑

n=2

n[(1 + nλ− λ− αn)]

∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣

≤
∞∑

n=2

n[n(λ− α) + (1− λ)]
(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

= (λ− α)

∞∑
n=2

|ab|P1

c

(1 + |a|)n−2(1 + |b|)n−2(1 + P1)n−2

(1 + c)n−2(1)n−2(2)n−2

+(1− α)

∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

= (λ− α)
|ab|P1

c
[3F2(1 + |a|, 1 + |b|, 1 + P1; 1 + c, 2; 1)]

+(1− α) [3F2(|a|, |b|, P1; c, 1; 1)− 1]

≤ 1− α

provided the condition (3.12) is satisfied.

Theorem 3.11. Let a, b ∈ C \ {0}. Also, let c be a real number and P1 = P1(k) be
given by (1.7). If f ∈ k − ST, for some k (0 ≤ k < ∞), and the inequality

(λ− α)
|ab|P1

c
3F2(1 + |a|, 1 + |b|, 1 + P1; 1 + c, 1; 1)

+(1 + λ− 2α)
|ab|P1

c
3F2(1 + |a|, 1 + |b|, 1 + P1; 1 + c, 2; 1)

+(1− α)3F2(|a|, |b|, P1; c, 1; 1)
≤ 2(1− α).

is satisfied, then Ia, b, c(f) ∈ M(λ, α).

Proof. Let f be given by (1.1). We will repeat the method of proving used in the
proof of Theorem 3.7. Applying the estimates for the coefficients given by (1.9),
and making use of the relations (3.6) and |(a)n| ≤ (|a|)n, we get

∞∑
n=2

n(1 + nλ− λ− αn)

∣∣∣∣
(a)n−1(b)n−1

(c)n−1(1)n−1
an

∣∣∣∣

≤
∞∑

n=2

n[n(λ− α) + (1− λ)]
(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

=

∞∑
n=2

(n− 1)[(n− 1)(λ− α) + (1− α)]
(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

+

∞∑
n=2

[(n− 1)(λ− α) + (1− α)]
(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1
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= (λ− α)

∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−2(1)n−2
+ (1− α)

∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−2

+(λ− α)

∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−2
+ (1− α)

∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

= (λ− α)

∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−2(1)n−2
+ (1 + λ− 2α)

∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−2

+(1− α)

∞∑
n=2

(|a|)n−1(|b|)n−1(P1)n−1

(c)n−1(1)n−1(1)n−1

= (λ− α)
|ab|P1

c
3F2(1 + |a|, 1 + |b|, 1 + P1; 1 + c, 1; 1)

+(1 + λ− 2α)
|ab|P1

c
3F2(1 + |a|, 1 + |b|, 1 + P1; 1 + c, 2; 1)

+(1− α) [ 3F2(|a|, |b|, P1; c, 1; 1)− 1]

≤ 1− α

provided the hypothesis is satisfied.

We state the following theorems without proof.

Theorem 3.12. (i) If a, b > −1, c > 0 and ab < 0, then zF (a, b, c) is in G(λ, α)
if and only if c > a + b + 1− (λ−α)

(1−α) ab.

(ii) If a, b > 0, c > a+b+1, then F1(a, b, c; z) = z[2−F (a, b, c; z)] is in G(λ, α) iff

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

[
1 +

(λ− α)ab

(1− α)(c− a− b− 1)

]
≤ 2.

Theorem 3.13. (i) If a, b > −1, c > 0 and ab < 0, then zF (a, b, c) is in
M(λ, α) if and only if (λ−α)(a)2(b)2 + (1− 4α + 3λ)ab(c− a− b− 2) + (1−
α)(c− a− b− 2)2 ≥ 0.

(ii) If a, b > 0, c > a+ b+2, then F1(a, b, c; z) = z[2−F (a, b, c; z)] is in M(λ, α)
iff

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

[
1 +

(λ− α)(a)2(b)2
(1− α)(c− a− b− 2)2

+
1− 4α + 3λ

1− α

ab

c− a− b− 1

]

≤ 2.
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