• 제목/요약/키워드: integrals

검색결과 622건 처리시간 0.031초

FAMILIES OF NONLINEAR TRANSFORMATIONS FOR ACCURATE EVALUATION OF WEAKLY SINGULAR INTEGRALS

  • BEONG IN YUN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제27권3호
    • /
    • pp.194-206
    • /
    • 2023
  • We present families of nonlinear transformations useful for numerical evaluation of weakly singular integrals. First, for end-point singular integrals, we define a prototype function with some appropriate features and then suggest a family of transformations. In addition, for interior-point singular integrals, we develop a family of nonlinear transformations based on the aforementioned prototype function. We take some examples to explore the efficiency of the proposed nonlinear transformations in using the Gauss-Legendre quadrature rule. From the numerical results, we can find the superiority of the proposed transformations compared to some existing transformations, especially for the integrals with high singularity strength.

EVALUATION OF SOME CONDITIONAL WIENER INTEGRALS

  • Chang, Kun-Soo;Chang, Joo-Sup
    • 대한수학회보
    • /
    • 제21권2호
    • /
    • pp.99-106
    • /
    • 1984
  • J. Yeh has recently introduced the concept of conditional Wiener integrals which are meant specifically the conditional expectation E$^{w}$ (Z vertical bar X) of a real or complex valued Wiener integrable functional Z conditioned by the Wiener measurable functional X on the Wiener measure space (A precise definition of the conditional Wiener integral and a brief discussion of the Wiener measure space are given in Section 2). In [3] and [4] he derived some inversion formulae for conditional Wiener integrals and evaluated some conditional Wiener integrals E$^{w}$ (Z vertical bar X) conditioned by X(x)=x(t) for a fixed t>0 and x in Wiener space. Thus E$^{w}$ (Z vertical bar X) is a real or complex valued function on R$^{1}$. In this paper we shall be concerned with the random vector X given by X(x) = (x(s$_{1}$),..,x(s$_{n}$ )) for every x in Wiener space where 0=s$_{0}$ $_{1}$<..$_{n}$ =t. In Section 3 we will evaluate some conditional Wiener integrals E$^{w}$ (Z vertical bar X) which are real or complex valued functions on the n-dimensional Euclidean space R$^{n}$ . Thus we extend Yeh's results [4] for the random variable X given by X(x)=x(t) to the random vector X given by X(x)=(x(s$_{1}$).., x(s$_{n}$ )).

  • PDF

ON A q-ANALOGUE OF THE p-ADIC GENERALIZED TWISTED L-FUNCTIONS AND p-ADIC q-INTEGRALS

  • Lee, Chae-Jang
    • 대한수학회지
    • /
    • 제44권1호
    • /
    • pp.1-10
    • /
    • 2007
  • The purpose of this paper is to define generalized twisted q-Bernoulli numbers by using p-adic q-integrals. Furthermore, we construct a q-analogue of the p-adic generalized twisted L-functions which interpolate generalized twisted q-Bernoulli numbers. This is the generalization of Kim's h-extension of p-adic q-L-function which was constructed in [5] and is a partial answer for the open question which was remained in [3].

SOME GENERALIZATIONS OF SUGENOS FUZZY INTEGRAL TO SET-VALUED MAPPINGS

  • Cho, Sung-Jin;Lee, Byung-Soo;Lee, Gue-Myung;Kim, Do-Sang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.380-386
    • /
    • 1998
  • In this paper we introduce the concept of fuzzy integrals for set-valued mappings, which is an extension of fuzzy integrals for single-valued functions defined by Sugeno. And we give some properties including convergence theorems on fuzzy integrals for set-valued mappings.

  • PDF

Some relation between compact set-valued functionals and compact set-valued Choquet integrals

  • 장이채;김현미
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.129-132
    • /
    • 2005
  • In this paper, we consider comonotonically additive compact set-valued functionals instead of interval-valued functionals and study some characterizations of them. And we also investigate some relation between compact set-valued functionals and compact set-valued Choquet integrals.

  • PDF

ON SOME GRONWALL TYPE INEQUALITIES FOR A SYSTEM INTEGRAL EQUATION

  • KIM, BYUNG-IL
    • 대한수학회보
    • /
    • 제42권4호
    • /
    • pp.789-805
    • /
    • 2005
  • In this paper we consider analogous of Gronwall-type inequalities involving iterated integrals in the inequality (1.2) for functions when the function u in the right-hand side of the in­equality (1.2) is replaced by the function $u^P$ for some p. These inequalities are effective tools in the study of a system of an integral equation. We also provide some integral inequalities involving iterated integrals.

MAPPING PROPERTIES OF THE MARCINKIEWICZ INTEGRALS ON HOMOGENEOUS GROUPS

  • Choi, Young-Woo;Rim, Kyung-Soo
    • 대한수학회지
    • /
    • 제39권1호
    • /
    • pp.61-75
    • /
    • 2002
  • Under the cancellation property and the Lipschitz condition on kernels, we prove that the Marcinkiewicz integrals defined on a homogeneous group H are bounded from $H^1$(H) to $L^1$(H), from $L_{c}$ $^{\infty}$(H) to BMO (H), and from $L^{p}$ (H) to $L^{p}$ (H) for 1 < p < $\infty$ assuming the $L^{q}$ -boundedness for some q > 1.for some q > 1.

STOCHASTIC MEHLER KERNELS VIA OSCILLATORY PATH INTEGRALS

  • Truman, Aubrey;Zastawniak, Tomasz
    • 대한수학회지
    • /
    • 제38권2호
    • /
    • pp.469-483
    • /
    • 2001
  • The configuration space and phase space oscillatory path integrals are computed in the case of the stochastic Schrodinger equation for the harmonic oscillator with a stochastic term of the form (K$\psi$(sub)t)(x) o dW(sub)t, where K is either the position operator or the momentum operator, and W(sub)t is the Wiener process. In this way formulae are derived for the stochastic analogues of the Mehler kernel.

  • PDF

PARABOLIC MARCINKIEWICZ INTEGRALS ASSOCIATED TO POLYNOMIALS COMPOUND CURVES AND EXTRAPOLATION

  • Liu, Feng;Zhang, Daiqing
    • 대한수학회보
    • /
    • 제52권3호
    • /
    • pp.771-788
    • /
    • 2015
  • In this note we consider the parametric Marcinkiewicz integrals with mixed homogeneity along polynomials compound curves. Under the rather weakened size conditions on the integral kernels both on the unit sphere and in the radial direction, the $L^p$ bounds of such operators are given by an extrapolation argument. Some previous results are greatly extended and improved.