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STOCHASTIC MEHLER KERNELS VIA
OSCILLATORY PATH INTEGRALS

AUBREY TRUMAN AND TOMASZ ZASTAWNIAK

ApsTRACT. The configuration space and phase space oscillatory
path integrals are computed in the case of the stochastic Schrédinger
equasion for the harmonic oscillator with a stochastic term of the
form (K+:)(x) o dW;, where K is either the position operator or
the momentum operator, and W, is the Wiener process. In this
way formulae are derived for the stochastic analogues of the Mehler
kernel.

1. Imtroduction

The stochastic partial differential equation of Schrédinger type

2
i) = (~ g + V(@) ) eloddi (K) @) 0 W,

belongs to a class of equations relevant to non-linear filtering theory,
cf. the Zakai equation [14], and to quantum filtering and measurement,
see Belavkin’s equation [6], {4]. In particular, for —%di;f + V and K
being selfadjoint operators, the equation was considered by Hudson and
Parthasarathy [8] and called the quantum filtering equation.

We shall employ oscillatory path integrals extending the approach
of Albeverio and Hgegh-Krohn 2] to find the Green’s function of the
above equation with the harmonic oscillator potential V(z) = %anQ.
In this context we are going to consider two cases: a) the position op-
erator (K)(x) = zt(z), and b) the momentum operator (K¢)(z) =
—z'f—sz(:c). In both cases we shall find an elegant formula for the Green’s
function, see (16) and (25) below, generalizing the well-known Mehler
kernel formula. This will be achieved by computing the appropriate path
integral: a configuration space oscillatory path integral in the position
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operator case and a phase space oscillatory path integral in the momen-
tum operator case. The former path integral is precisely that introduced
by Albeverio and Hgegh-Krohn in [2]. However, the latter uses a differ-
ent set of paths, namely phase space valued ones. It was introduced in
[12] by extending Albeverio and Hgegh-Krohn’s definition.

Finally, let us mention some other papers devoted to path integral
representations of solutions to stochastic partial differential equations of
Schridinger type: Albeverio, Kolokol'tsov and Smolyanov [3], Belavkin
and Smolyanov [5], Zastawniak [15], Truman and Zhao [13].

2. Configuration space oscillatory path integrals

We shall follow Albeverio and Hgegh-Krohn’s approach to Feynman
path integrals [2], which was originally introduced in connection with
the ordinary Schrodinger equation and has recently been extended by
Zastawniak [15] to the case of stochastic PDEs of Schrodinger type.
Albeverio and Hgegh-Krohn's path integrals, also known as oscillatory
or Fresnel type path integrals, lend themselves well to computation in
concrete cases, as will be seen in the next section, in which we shall find
a stochastic analogue of the Mehler kernel.

Let H be a separable real Hilbert space with scalar produet (-, ). We
denote by M (H) the Banach algebra of complex-valued Borel measures
on ‘H with the total variation ||g|| of a measure i € M(H) serving as
the norm and the convolution p * v of measures p,v € M(H) playing
the role of multiplication. The space of Fourier transforms

i(x) = [ ) ua)
H

of measures u € M(H) will be denoted by F(H). The latter is also a
Banach algebra with norm ||fz|| := {|x]| and pointwise multiplication, the
Fourier transform A : M(H) — F(H) being an isomorphism of Banach
algebras.

Given a bounded linear selfadjoint operator B : H — H with bounded
inverse, we shall write

(X,Y)=(X,BY)

for any X,Y € H. We assume that B = I + L, where L is a trace class
operator, and denote by det B the Fredholm determinant of B. We shall

also write _
Vdet B = exp (%IndB) Vdet B,
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where Ind B is the number of negative eigenvalues of B counted with
multiplicity.
Every f € F(H) can be expressed as

1) ) = /H eH (XX (dx),

where p € M(H). Then the oscillatory path integral of f (with respect
to B) is defined by

() fH XX f(X)dX—m_ ~$X0 L 03x0).

This is essentially Albeverio and Hgegh-Krohn’s definition [2], except
for the factor 1/v/det B.

. We fix t > 0 and denote by H;, the Hilbert space of absolutely con-
tinuous functions X : [0,¢] — R with derivative X’ € L?0,#] such that
X (t) = 0. The scalar product in H; is defined by

t
(X,Y); — fo X'y’ ds

for any X,Y € H;.
For any fixed a > 0 we put

(3) (BX)S=X3+a2]qududr, X eH;, se(0,1]
£ 0

Then B : Hy — H; is a bounded linear operator. Since B = 1+ L,
where L is a trace class operator, the Fredholm determinant of B is well
defined and can be shown to be

(4) det B = cos (at) ,

gee {11], Lemma 4.1 in [7], or Example 2.4 in {1},

The bounded inverse B! exists if a? ¢ o(A), the spectrum of the
Sturm-Liouville operator A on L2[0,#] defined by Au = -u” on the
domain D(A) consisting of all 4 € L?[0,¢] such that «” € L*[0,] and
wp = u} = 0. The inverse B! is given by [16]

Bl =TI+ &K 'R:K,

where R,z = (I — aQA)“1 is the resolvent of A and (Ku)s = wy—s for
any u € L?[0,#] and s € [0,¢]. Another useful expression gives B! in
terms of the Green’s function G of A — ¢TI :

t
(5) (B1X), = X, + o / Gi—s—r X, dr.
0
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Here i
__ sin(ar) cos(at — as)

G..=G,,. =
e ot acos(at)
forany 0 <r <s<t.
Let us introduce functions o, 7 : [0,%] — R such that

o' +a’c=0, op=0, or=1,
7' +a’n=0, mp=1, 7,=0,
that is, for any s € [0, ]
(6) _ lexIll (((;2 = sin (at — as)
We shall also need the following closed subspaces of H;:
[7] = {zn:z € R}, H{={XcH;: X(0)=0}.

sin (at)

Clearly,
My =[] & H;.
Consider the bilinear form
t ¢
(7) (X,Y), = f X'Y!ds — a2[ X,Yds
0 0

defined for all X,Y : [0,t] — Rsuch that X', Y’ € L?[0,¢]. In particular,
for any XY € H;
(X,Y), = (X,BY),,
and for any X,Y € HY
(X,0),={(X,m, —=0.
If V,p € F(R), then the solution to the Cauchy problem

9 1 d2 2,.2
(3) i&w@r=65£§+%?+vwﬂwwx
Yo(x) = p(x)
can be represented as
©) Yulz) = e / e XX f(X) dX,
Hi

where the functional
f(X) = eoXabegmi fVXateodds 0y X € H,
belongs to F(H;) and the path integral over H; (with respect to B)

is understood as in (2). This well-known result was established in [2].
(Here we use a slightly different notation.)
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3. Oscillatory path integral computation of the stochastic
Mehler kernel: position operator case

We shall consider the Cauchy problem for the stochastic Schrodinger
equation
_ 1 & a?x?
(10) ’Ed’lJJt(.’E) = (—Ew + T) ¢¢($)dt + $¢t($ﬂ) o dW,.

The stochastic term ziy(x) o dW; involves the position operator acting
on the wave function.
Our goal is to compute the kernel G¢(z, y), so that for any ¢ € F(R)

ile) = /R Gyl v)o(y) dy

is a solution to (10} with initial condition g = .
To this end we shall show that f defined by

(11) FIX) = eimXio) o~ foXstzos)dWs o x VX € H,

(here the exponent involves an Itd stochastic integral) is an F(H;)-valued
random variable. Then, following [15], we can represent the solution as
a path integral

(12) wle) = b=l [ B0 x) ax
H,
similar to (9). By computing this path integral we shall find an elegant
explicit expression for Gi(z,y).
Since the initial condition ¢ belongs to F(R), so does the function
9 : R — C defined by

Iy) = V)=t fi@ostym)dWe ).
that is,
9(9) = [ vl
for some v € M{R). Then, for a,nym;f € [n]

9(Yp) = f 0% (dg) = / eHV'0Wey(dg)
R R
— /[‘] €i<y’f/>t (VO e—l) (d}_/),
)

where q
O:Rag— ——neln.
o, <
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We define a € H; by
t
s = —/ W.dr, s€][0,t]
8
and take
(13) £=Bla— (B_la)on € HY,
the projection of B~'a € H; onto HY. Then for all Z € HY
e~ fo ZedWs _ i(Z0), _ SHZ.6), :/ ef(Zj)zég(dZ),
HY
where dy denotes the Dirac delia measure concentrated at X € H,.
Now the functional defined by (11) can be written as
F(X) = 9(Yo)e ™ fo ZeaWs

= ei<y'?>t vo® 1) (dY e’:(Z’Z)tJ dzZ
J[ 0N ooy @) [ e Phigaz)

HY
- / et (XD d %),
He
where X =Y + Z is the unique decomposition of X € H; into vectors
Y € [n] and Z € HY, and where
p=(vo 6_1) & 0.

It follows that f € F(H;) and we are ready to compute the path integral
(12). First we find that

[ e oo ) @) = LI [ nanagy)ay,
] 2me Jr

MY

This gives
i(z) = ez @), /H et X f(X) dX
— d:’tBeéx2(o‘,o’)t L ef%(X,X)tp(dx)
v £
= Vo [T a0

= f Gz, y)ely) dy,
R
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where

(14) Gi(z,y) = %eéﬂwhe;y%n,n)tee‘my(n,a)t
me

o o= Jo (oY JdWs ,—5(E6),

It remains to find (o, 0},, (n,n),, (n,0),, and {£,£),. The first three
expressions are easily computed by substituting formulae (6) for ¢ and
7 into (7):

a a
15 = -_° ___*
( ) (Ja U)t (n: n)t tan(at) ’ (7?, U)t Sin(at)
The expression (£,£),, which leads to double stochastic integrals, re-
quires some careful treatment to ensure that the integrand of the outer
stochastic integral is non-anticipating. Namely,

" g)t _ foa Wfds 9 /Ot [./:" cos(as) cos(at — ar) WSWrdS] dr

sin(eat)

t ™ . . _
_2 / [ [ sin(as) sin(at — ar) . dWS] o dW,.
o L/e

a sin(at)

The first equality is obtained simply by substituting the definition (13)
of £ into (7) and applying formula (5) for B=!. The second equality
follows by applying the Itd formula twice. The symbol ¢ designates
Stratonovich stochastic integrals. Inserting the above expressions into
(14) and using (4) for det B, we obtain the following result:

THEOREM 1. The Green’s function of the stochastic Schrodinger
equation (10) is given by

~ = . (2% + y*) cos(at) — 2zy
(16) Gi(z,y} = \/%Tl(—at) exp (m 2sin(at) )

t - . _
% exp (_@f x sin{as) -|'—'ysm(at as) o dWs)
0 sin{at)

X exp (—;—' /Ot [/{;T Sin(asli?g:; —ar) o dWs] o dWT) .

Observe that the expression in the first line on the right-hand side is
the well-known Mehler kernel for the harmonic oscillator. In particular,
the choice of the branch of the square root is the same as in the Mehler
kernel. We shall call the above formula the stochastic Mehler kernel
(position operator case).
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4. Phase space oscillatory path integrals

The stochastic Schrodinger equation (10) involves the position oper-
ator acting on the wave function in the stochastic term z,(z) o dW,.
In what follows we shall also consider an equation with the stochastic
term —id%wt(cc) o dWs, in which the momentum operator takes place of
the position operator. To this end we need to extend the definition of
oscillatory path integrals to the case of phase space valued paths.

In the case of the configuration space oscillatory path integrals con-
sidered in Section 2 the paths belong to H; and their derivatives to
L; = L?[0,t]. It is therefore natural to take £: to be the set of momen-
tum space paths and H; x £; to be the set of phase space paths. H; x £;
is a Hilbert space equipped with the scalar product

t 4
(X,P;Y,Q):/ X;Y;d5+/ P.Q.ds
0 0

defined for any X,Y € H; and P,Q € £;. We also introduce the kinefic
energy bilinear form

t ¢ t
[X,P;Y,Q]:f X'Q, ds+f YS"PSds—f P,Q, ds
i 0 0
on H; x £y. Clearly, [X, P;Y,Q] = (X, P; S(Y,Q)), where

()
S(Y,Q) = (ft Qyds,¥' - Q)

is a bounded linear operator in H; x L;.
Given a bounded linear selfadjoint operator C on H; x £; with bounded
inverse C'!, we shall consider the continuous bilinear form

(X,P‘,Y,Q) = [XrPrC(YaQ)] = (X7PaSA(Y7Q))

on H; x £;. We also assume that C = [ + T, where T is a trace class
operator.

DEFINITION 1. The phase space oscillatory path integral (with re-
spect to C} of a functional

P = [ PO ay,ag),
t XLy

where pp € M(H; x L), is defined by

f ez XPXP) (X PYdX dP = —1 (MY (dY, dQ).
Hf_Xﬁt

Vi )
— €
det C Jr,xcy
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This definition follows closely the pattern of Albeverio and Hgegh-Krohn's
configuration space oscillatory path integral in that integration is per-
formed over a Hilbert space of paths. It proves sufficient to tackle the
deterministic Schrédinger equation. However, to deal with the stochas-
tic Schrodinger equation we need to extend the set of momentum space
paths from H,; x £ to C¢ x Ly, where C,; is the set of continuous functions
from [0, ¢] to R vanishing at t. This can readily be done if the bilinear
from (X, P;Y,Q) can be extended from H; x £; to a continuous bilinear
form on C; x £;. In this case we adopt the following definition.

DEFINITION 2. The phase space oscillatory path integral (with re-
spect to C} of a functional

fop) = [ e auay,ag)
CtXEt

where u € M(C, x L;), is defined by

1

—E{v,QiYV,Q)
"2 w(dY,d@Q).
Vdet C Je,x o, ( )

f e OPXPI F(X, P)dX dP =
Ctxﬁt

We shall consider the bilinear from
t t ¢ t
<X1P;Y5Q)t = / Qs dX; Jf/ P, dY; _/ Pstds_a2f XY ds
0 0 0 0

defined for all square integrable functions P,@ : [0,t] — R and al-
most all (with respect to the Wiener measure) continuous functions
X,Y : [0,f] — R, where f[f Q,dX, and f[f P.dY, are understood as
Paley-Wiener-Zygmund integrals [9] (or simply stochastic It6 integrals
in modern terminology}.

Next, we introduce an operator C' such that

C(X,P)=(BX,P+ (BX — X))
for any X € H; and P € £;. Clearly, '
(17) (X, PY,Q), = [X,P;C(Y, Q)]

for any X,Y € H; and P,QQ € L;. The operator is of the form C = 1+T,
where T is trace class. It turns out that

(18) detC =detB, IndC=IndB, +detC = vdetB.
The inverse of C is given by
(19) CYX,P)=(B7'X,P+(B71X - X)".
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5. Oscillatory path integral computation of the stochastic
Mehler kernel: momentum operator case

In this section we shall consider the Cauchy problem for the stochastic
Schrodinger equation
. 1 d%  a?x? d

with the momentum operator acting on the wave function in the sto-
chastic term.
Our goal is to compute the kernel G¢(z, ¥), so that for any ¢ € F(R)

bo(z) = /R Cu(z, v)o(y) dy

is a solution to (20) with initial condition ¥ = ¢.
Following [12], the Cauchy problem for (20) can be solved by com-
puting the path integral

(21) Pz) = ps2 (o0t io0), / e%(X,P;X,P)zf(X’ P)dX dP,
C,:Xﬁg

where
(22) F(X, P) = =X P b gty (Prkao) dWo o ),
To this end we need to find a measure p € M(C; x £;) such that

f(X, P) =/C. ; eﬁ(X,P;X‘,P)ﬁ Ju(d)_{,dp)
t Xt

First of all observe that
<X,P;J,a’)t = (X, P),,
<0-7 o-f; g, U’>t = (05 g)t 1
where the bilinear form on the right-hand side is that defined by (7).
This simplifies slightly the expressions in (21) and (22).
The space of paths C; x £; can be represented as a direct sum of the
closed subspaces

= {(mn,xn’) T E R}, (Ctxﬁt)o ={(X,P)e(, x L;: Xg=0},
that is,
Ce % Ly = [m,n] D (C x L4)°.
For any (X, P} € (C; x £;)°
(X, Pin,), =(X,P;a,0'), =0.
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Now, (X, P) € C; x L; can be written uniquely as (X,P) = (Y,Q) +
(Z, R), where (Y, Q) € [,7] and (Z,R) € (Ct x £;)". Hence, f(X,P)
can be written as

F(X, P) = 0(Yp)e™Jo s dWs

where
8(y) = eizy(n,a)ze*ifé(wHyn’s)dWs@(y)_

Because ¢ belongs to F(R), so does 8, that is,

oy) = /R ¥y (dg).

for some v € M(R). Consider the mapping

q ’ '
ARs3g— ——n7v)enn]
{n.n),

Then
oxe) = [ e¥0tw(dg) = [ Ny
3 R
=/ ei(Y’Q"Y'QL(uoAfl)(d}_’,dQ).
']

We put V; = W, — W, and define (£,{) to be the projection of
C~}(—V,0) onto (C; x Et)o, that is,
(23)
(&,¢) = (=B W+(B~W)gn, —(B-'V-VY+(B'V)on) € (C; x £,)° .

Then
t
(Z,B;£,C), = |Z,B; =V, 0] = — f R, dV,
0

and
i [ R dVe _ HERED, _ f HERZR 5 a7, dR).
(Ctxﬁt)
It follows that
foxpy= [ HRPED. R ap),
CLX.Ct

where

p=@oAT} 8¢
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We are now in a position to compute the path integral (21). First we
find that

/ e SNV Q(y 0 AY)(aY,dQ) = /LI / e3¥* 1 y) dy,
[n7] 2t Jr
/ 0 "1 HRZE), 8e.c)(dZ,dR) = e~ 3668

(C:Xﬁ:)

This gives

T/Jt(ﬂ’,‘) — e%x%g,g';o,g’hf(} . E%{X’P;X’P)tf(X, P) dX dP
£ XLy

_ 1 e%m2(a;cr)t f 6_%(X'P;X’P)t,ux(dX, dP)
ngﬁg

vdet
_ )y seree, ~tiecen [ ivion
“Varidetc® ¢ ﬁfmez Ol dy
where
(24) Gt(:l:,y) — (n#n)t e%i’!2<0,0’)te%y2<nm)teimy(n!’:’)t

2midet C
x e~ Jo@alym) dWs ,— F(E.CGEQ,

The expressions for {o,c),, (7,7}, and {n, o), were found in Section 3,
see (15). It remains to compute {£,¢;&,(),. This leads to double sto-
chastic integrals and requires some careful treatment to ensure that the
integrand of the outer stochastic integral is non-anticipating. Namely,

qcos(at) sin{at — as)

t
(£, G &0y = —alp sin(at) +2a Vofo Ve sin(at)

£ t r e . _
+a2/ V2ds + 2a3f / sin(as) .sm(at ar) V.V ds| dr
0 0 LJo sin(at)

t T _
_ *2‘1] [/ cos(as) cos(at — ar) odWS] o dW.
o LJo

sin(at)

ds

The first equality is obtained by substituting (23) into (17) and using
formulae (19) and (5) for C~! and B~!. The second equality follows
by applying the It6 formula twice. Inserting these expressions into (24)
and using formula (18) for det C, we finally obtain the following result.
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THEOREM 2. The Green’s function for the stochastic Schrédinger
equation (20) is given by

_ a . (ac2 + y2) cos{at) — 2zy

(25) Gil, ) =\ 57 Gn(ar) &P ( Ssin(at)
« oxo | —ia /'t z cos(as) — ycos{at — as) o dW
P 0 sin(at) ¢

con{o [ [ o))

Observe that, once again, the expression in the first line on the right-
hand side is the well-known Mehler kernel for the harmonic oscillator.
Here the choice of the branch of the square root is also the same as in
the Mehler kernel. We shall call the above formula the stochastic Mehler
kernel (momentum operator case).

6. Conclusions

Formulae (16) and (25) for the stochastic Mehler kernels, once com-
puted by means of path integrals, can of course be verified directly by
inserting into the stochastic partial differential equations (10) and (20},
respectively. Nevertheless, such direct verification, even if straightfor-
ward, is much more tedious than the path integral derivation.

Using the above results as a starting point in his recent PhD thesis
[10], L. Rincén computed the corresponding path integrals by discreti-
sation (polygonal path approximation), once again confirming formulae
(16) and (25) for the stochastic Mehler kernels. He also obtained anal-
ogous formulae for the Green’s functions in the case of stochastic heat
equations with similar stochastic terms.
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