DOI QR코드

DOI QR Code

ON A q-ANALOGUE OF THE p-ADIC GENERALIZED TWISTED L-FUNCTIONS AND p-ADIC q-INTEGRALS

  • Lee, Chae-Jang (Department of Mathematics and Computater Science KonKuk University)
  • Published : 2007.01.31

Abstract

The purpose of this paper is to define generalized twisted q-Bernoulli numbers by using p-adic q-integrals. Furthermore, we construct a q-analogue of the p-adic generalized twisted L-functions which interpolate generalized twisted q-Bernoulli numbers. This is the generalization of Kim's h-extension of p-adic q-L-function which was constructed in [5] and is a partial answer for the open question which was remained in [3].

Keywords

References

  1. G. E. Andrews, Number Theory, W. B. Saunder Company, Philandelphia, London- Toronto, 1971
  2. G. Bachmann, Introduction to p-adic numbers and valuation theory, Academic Press, New York-London, 1964
  3. T. Kim, L. C. Jang, S. G. Rim, and H. K. Pak, On the twisted q-zeta functions and q-Bernoulli polynomials, Far East J. Appl. Math. 13 (2003), no. 1, 13-21
  4. T. Kim and S. H. Rim, Generalized Carlitz's q-Bernoulli numbers in the p-adic number field, Adv. Stud. Contemp. Math. (Pusan) 2 (2000), 9-19
  5. T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288-299
  6. T. Kim, On Euler-Barnes multiple zeta functions, Russ. J. Math. Phys. 10 (2003), no. 3, 261-267
  7. T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), no. 2, 320-329 https://doi.org/10.1006/jnth.1999.2373
  8. T. Kim, p-adic q-integrals associated with Changhee-Barnes' q-Bernoulli polynomials, Integral Transforms Spec. Funct. 15 (2004), no. 5, 415-420 https://doi.org/10.1080/10652460410001672960
  9. T. Kim, Non-Archimedean q-integrals associated with multuple Changhee q-Bernoulli polynomials, Russ. J. Math. Phys. 10 (2003), no. 1, 91-98
  10. T. Kim, Analytic continuation of multiple q-zeta functions and their values, Russ. J. Math. Phys. 11 (2004), no. 1, 71-76
  11. T. Kim, q-Riemann zeta functions, Int. J. Math. Math. Sci. 12 (2004), no. 9-12, 599-605
  12. T. Kim, On p-adic q - L-functions and sums of powers, Discrete Math. 252 (2002), no. 1-3, 179-187 https://doi.org/10.1016/S0012-365X(01)00293-X
  13. T. Kim, On explicit formulas of p-adic q - L-functions, Kyushu J. Math. 48 (1994), no. 1, 73-86 https://doi.org/10.2206/kyushujm.48.73
  14. T. Kim, Sums of powers of consecutive q-integers, Adv. Stud. Contemp. Math. (Kyung-shang) 9 (2004), no. 1, 15-18
  15. N. Koblitz, A new proof of certain formulas for p-adic L-functions, Duke Math. J. 46 (1979), no. 2, 455-468 https://doi.org/10.1215/S0012-7094-79-04621-0
  16. N. Koblitz, p-adic numbers, p-adic analysis and Zeta functions, Graduate Texts in Math-ematics, Vol. 58. Springer-Verlag, New York-Heidelberg, 1977
  17. N. Koblitz, On Carlitz's q-Bernoulli numbers, J. Number Theory 14 (1982), no. 3, 332-339 https://doi.org/10.1016/0022-314X(82)90068-3
  18. N. Koblitz, p-adic numbers and their functions, Springer-Verlag, GTM 58, 1984
  19. A. M. Robert, A course in p-adic analysis, Graduate Texts in Mathematics, 198. Springer-Verlag, New York, 2000
  20. W. H. Schikhof, Ultrametric Calculus, Cambridge Studies in Advanced Mathematics, 4. Cambridge University Press, Cambridge, 1984
  21. K. Shiratani and S. Yamamoto, On a p-adic interpolating function for the Euler number and its derivative, Mem. Fac. Sci. Kyushu Univ. Ser. A 39 (1985), no. 1, 113-125
  22. Y. Simsek, On p-adic twisted q - L-functions related to generalized twisted Bernoulli numbers, Russian J. Math. Phys. 13 (2006), no. 3, 340-348 https://doi.org/10.1134/S1061920806030095
  23. Y. Simsek, Twisted (h,q)-Bernoulli numbers and polynomials related to twisted (h; q)-zeta function and L-function, J. Math. Anal. Appl. 324 (2006), no. 2, 790-804 https://doi.org/10.1016/j.jmaa.2005.12.057
  24. Y. Simsek, Theorems on twisted L-functions and twisted Bernoulli numbers, Adv. Stud. Contemp. Math. 11 (2005), no. 2, 205-218
  25. A. C. M. van Rooji, Non-Archimedean Functional Analysis, Monographs and Textbooks in Pure and Applied Math., 51. Marcel Dekker, Inc., New York, 1978
  26. L. C. Washington, Introduction to Cyclotomic fields, Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997

Cited by

  1. On the Barnes' Type Related to Multiple Genocchi Polynomials on vol.2012, 2012, https://doi.org/10.1155/2012/679495
  2. Bonnesen-style Wulff isoperimetric inequality vol.2017, pp.1, 2017, https://doi.org/10.1186/s13660-017-1305-3
  3. Effects of Social Capital on Organizational Performance in Hospital Organization - Focusing on Effects of Intellectual Capital - vol.17, pp.1, 2011, https://doi.org/10.11111/jkana.2011.17.1.22
  4. THE q-ANALOGUE OF TWISTED LERCH TYPE EULER ZETA FUNCTIONS vol.47, pp.6, 2010, https://doi.org/10.4134/BKMS.2010.47.6.1181
  5. A comparison of Korean and US continuous improvement projects vol.63, pp.4, 2014, https://doi.org/10.1108/IJPPM-01-2013-0012
  6. A Note on the Multiple Twisted Carlitz's Type -Bernoulli Polynomials vol.2008, 2008, https://doi.org/10.1155/2008/498173
  7. Effects of Intellectual Capital on Organizational Performance of Nurses in Medium and Small Hospitals vol.18, pp.4, 2012, https://doi.org/10.11111/jkana.2012.18.4.452
  8. A Preliminary Analysis of Spatial Variability of Raindrop Size Distributions during Stratiform Rain Events vol.48, pp.2, 2009, https://doi.org/10.1175/2008JAMC1877.1
  9. A NOTE ON THE WEIGHTED TWISTED DIRICHLET'S TYPE q-EULER NUMBERS AND POLYNOMIALS vol.33, pp.3, 2011, https://doi.org/10.5831/HMJ.2011.33.3.311
  10. When everyone goes to college: The causal effect of college expansion on earnings vol.50, 2015, https://doi.org/10.1016/j.ssresearch.2014.11.014
  11. A family of p-adic twisted interpolation functions associated with the modified Bernoulli numbers vol.216, pp.10, 2010, https://doi.org/10.1016/j.amc.2010.04.010
  12. Development of QI Activity Evaluation Framework Based on PDCA and Case Study on Quality Improvement Activities vol.18, pp.2, 2012, https://doi.org/10.11111/jkana.2012.18.2.222
  13. A NOTE ON THE TWISTED LERCH TYPE EULER ZETA FUNCTIONS vol.50, pp.2, 2013, https://doi.org/10.4134/BKMS.2013.50.2.659
  14. Research on the recent tendency of quality circle papers and improvement plans vol.44, pp.4, 2016, https://doi.org/10.7469/JKSQM.2016.44.4.845