• Title/Summary/Keyword: homogeneous spaces

Search Result 78, Processing Time 0.02 seconds

Generalized carleson inequality on spaces of homogeneous type

  • Yoo, Yoon-Jae
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.4
    • /
    • pp.649-659
    • /
    • 1995
  • The purpose of this paper is to generalize the Carleson inequality, which is known to play important roles in harmonic analysis. The result given here is a generalization of Coifmann, Meyer, Stein [CMS]. A similar result is shown by Deng [D].

  • PDF

NORM ESTIMATE FOR A CERTAIN MAXIMAL OPERATOR

  • Jong-In Lee;Yoon Jae Yoo
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • A condition for a certain maximal operator to be of strong type (p,p) is characterized in terms of Carleson measure.

  • PDF

MAXIMUM MODULI OF UNIMODULAR POLYNOMIALS

  • Defant, Andreas;Garcia, Domingo;Maestre, Manuel
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.209-229
    • /
    • 2004
  • Let $\Sigma_{$\mid$\alpha$\mid$=m}\;s_{\alpha}z^{\alpha},\;z\;{\in}\;{\mathbb{C}}^n$ be a unimodular m-homogeneous polynomial in n variables (i.e. $$\mid$s_{\alpha}$\mid$\;=\;1$ for all multi indices $\alpha$), and let $R\;{\subset}\;{\mathbb{C}}^n$ be a (bounded complete) Reinhardt domain. We give lower bounds for the maximum modules $sup_{z\;{\in}\;R\;$\mid$\Sigma_{$\mid$\alpha$\mid$=m}\;s_{\alpha}z^{\alpha}$\mid$$, and upper estimates for the average of these maximum moduli taken over all possible m-homogeneous Bernoulli polynomials (i.e. $s_{\alpha}\;=\;{\pm}1$ for all multi indices $\alpha$). Examples show that for a fixed degree m our estimates, for rather large classes of domains R, are asymptotically optimal in the dimension n.

THE RANDER CHANGES OF FINSLER SPACES WITH ($\alpha,\beta$)-METRICS OF DOUGLAS TYPE

  • Park, Hong-Suh;Lee, Il-Yong
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.503-521
    • /
    • 2001
  • A change of Finsler metric L(x,y)longrightarrowL(x,y) is called a Randers change of L, if L(x,y) = L(x,y) +$\rho$(x,y), where $\rho$(x,y) = $\rho$(sub)i(x)y(sup)i is a 1-form on a smooth manifold M(sup)n. Let us consider the special Randers change of Finsler metric LlongrightarrowL = L + $\beta$ by $\beta$. On the basis of this special Randers change, the purpose of the present paper is devoted to studying the conditions for Finsler space F(sup)n which are transformed by a special Randers change of Finsler spaces F(sup)n with ($\alpha$,$\beta$)-metrics of Douglas type to be also of Douglas type, and vice versa.

  • PDF

RULED MINIMAL SURFACES IN PRODUCT SPACES

  • Jin, Yuzi;Kim, Young Wook;Park, Namkyoung;Shin, Heayong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1887-1892
    • /
    • 2016
  • It is well known that the helicoids are the only ruled minimal surfaces in ${\mathbb{R}}^3$. The similar characterization for ruled minimal surfaces can be given in many other 3-dimensional homogeneous spaces. In this note we consider the product space $M{\times}{\mathbb{R}}$ for a 2-dimensional manifold M and prove that $M{\times}{\mathbb{R}}$ has a nontrivial minimal surface ruled by horizontal geodesics only when M has a Clairaut parametrization. Moreover such minimal surface is the trace of the longitude rotating in M while translating vertically in constant speed in the direction of ${\mathbb{R}}$.

ENDPOINT ESTIMATES FOR MAXIMAL COMMUTATORS IN NON-HOMOGENEOUS SPACES

  • Hu, Guoen;Meng, Yan;Yang, Dachun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.809-822
    • /
    • 2007
  • Certain weak type endpoint estimates are established for maximal commutators generated by $Calder\acute{o}n-Zygmund$ operators and $Osc_{exp}L^{\gamma}({\mu})$ functions for ${\gamma}{\ge}1$ under the condition that the underlying measure only satisfies some growth condition, where the kernels of $Calder\acute{o}n-Zygmund$ operators only satisfy the standard size condition and some $H\ddot{o}rmander$ type regularity condition, and $Osc_{exp}L^{\gamma}({\mu})$ are the spaces of Orlicz type satisfying that $Osc_{exp}L^{\gamma}({\mu})$ = RBMO(${\mu}$) if ${\gamma}$ = 1 and $Osc_{exp}L^{\gamma}({\mu}){\subset}RBMO({\mu})$ if ${\gamma}$ > 1.

DECOMPOSITION FOR CARTAN'S SECOND CURVATURE TENSOR OF DIFFERENT ORDER IN FINSLER SPACES

  • Abdallah, Alaa A.;Navlekar, A.A.;Ghadle, Kirtiwant P.;Hamoud, Ahmed A.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.2
    • /
    • pp.433-448
    • /
    • 2022
  • The Cartan's second curvature tensor Pijkh is a positively homogeneous of degree-1 in yi, where yi represent a directional coordinate for the line element in Finsler space. In this paper, we discuss the decomposition of Cartan's second curvature tensor Pijkh in two spaces, a generalized 𝔅P-recurrent space and generalized 𝔅P-birecurrent space. We obtain different tensors which satisfy the recurrence and birecurrence property under the decomposition. Also, we prove the decomposition for different tensors are non-vanishing. As an illustration of the applicability of the obtained results, we finish this work with some illustrative examples.

REIDEMEISTER ZETA FUNCTION FOR GROUP EXTENSIONS

  • Wong, Peter
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.6
    • /
    • pp.1107-1116
    • /
    • 2001
  • In this paper, we study the rationality of the Reidemeister zeta function of an endomorphism of a group extension. As an application, we give sufficient conditions for the rationality of the Reidemeister and the Nielsen zeta functions of selfmaps on an exponential solvmanifold or an infra-nilmanifold or the coset space of a compact connected Lie group by a finite subgroup.

  • PDF

MIXED VECTOR FQ-IMPLICIT VARIATIONAL INEQUALITIES WITH FQ-COMPLEMENTARITY PROBLEMS

  • Lee, Byung-Soo
    • Honam Mathematical Journal
    • /
    • v.31 no.2
    • /
    • pp.247-258
    • /
    • 2009
  • This paper introduces new mixed vector FQ-implicit variational inequality problems and corresponding mixed vector FQ-implicit complementarity problems for set-valued mappings, and studies the equivalence between them under certain assumptions in Banach spaces. It also derives some new existence theorems of solutions for them with examples under suitable assumptions without monotonicity. This paper generalizes and extends many results in [8, 10, 19-22].