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THE RANDERS CHANGES OF FINSLER SPACES
WITH (o,5)-METRICS OF DOUGLAS TYPE

Howng-Suld PARK AND IL-YONG LEE

ABSTRACT. A change of Finsler metric L(z,y) — L(z, y) is called
a Randers change of L, if L(z, ) = L(z, y)+p(z, y), where p(z,y) =
pi(x)yt is a 1-form on a stooth manifold M™. Let us consider the
special Randers change of Finsler metric L ~— L = L-+#by 4. On
the basis of this special Randers change, the purpose of the present
paper is devoted to studying the conditions for Finsler space F
which are transformed by a special Randers change of Finsler spaces
F™ with (e, 8)-metrics of Douglas type to be also of Douglas type,
and vice versa.

1. Introduction

An n-dimensional Finsler space F™ is a Douglas space or of Douglas
type if and only if the Douglas tensor vanishes identically. Recently R.
Bécsé and M. Matsumoto ([2]) have introduced the notion of Douglas
space as a generalization of Berwald space from the viewpoint of geodesic
equations. The conditions for some Finsler spaces with an («, #)-metric
to be Douglas space are obtained by M. Matsumoto ((8]).

A change of Finsler metric L(z,y) — L is called a Randers change
of L, if L{z,y) = L(z,y) + o(x,y), where p(z,y) = pi(z)y’ is a 1-form
on a smooth manifold M™. The notion of a Randers change has been
proposed by M. Matsumoto ([5]). If L(z,y) is a Riemannian metric,
then L(z,y) becomes the Randers metric.

The purpose of the present paper is to study the Randers change of
the Finsler space which is Douglas type. After the section 4, we consider
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a special Randers change of certain Finsler spaces with an (o, 8)-metric
L by . The l-form 3 of modification is coincided with 1-form 3 of
(o, B)-metric L. We are devoted to finding the conditions for Finsler
spaces changed by a special Randers change to be of Douglas type.

2. Preliminaries

The geodesics of an n-dimensional Finsler space F* = (M™, L) are
given by the system of the differential equations ([1]):

A2zt By . , , . ) dz?
Jjg_ % a i T A} 1 - —
2V~ Yt {C (wy)y’ —GHayly'} =0, ' = =

in a parameter ¢. The function G*(z,y) are given by
2G%(z,y) = 9" (y"0,0.F — 8;F),

where 9; = 8/9y*, 8; = 8/0z*, F = L%/2 and g¥(z,y) are the inverse of
Finsler metric tensor g;;(x,y). According to (2], F™ is of Douglas type
if

(2.1) DY = Gz, y)y’ — G (z, v}y’

are homogeneous polynomials in (y*) of degree three. We shall denote
the homogeneous polynomlals in (y') of degree r by hp (r} for brevity.
LetL—BL LJ—GBL LUk—-akBBL Then we have

And we put
(2.2) 2By = pa)j +051ir 2F5; = pijy — Pjlas

where (|) denotes the h-covariant derivative with respect to the Cartan
connection CT" = (Fkij,Gij, Ci';).

On the other hand, a Finsler metric L(z,y) is called an (o, 8)-metric,
when L is a positively homogeneous function L(a, 8) of degree one in two
variables a(z, y) = \/ai;{z)y*y’ and B(x,y) = b:(z)y*. The space R" =
(M™, @) is called the associated Riemannian space with F™ ([1], {7]).
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We have the covariant differentiation {;) with respect to the Christoffel
symbols v;x(z) in R™. We shall use the symbols as follows:

1 1
rig = 5y +b5), iy = 5{bi; — bsii),
S?;j =G,ir3rj, sj:—brs’"j.

Now we consider the functions G*(x,y) of F™ with an (a, )-metric.
According to [8], G*(z,y) are written in the form

929G = yo'o + 2B,

(2.3) . alg, . [BLs ; aLea (Y abf
p= Prowvo {2 (- ) |

where L, = 8L/0a, Lg = 8L/88, Loa = 8°L/8aba, the subscript 0
means contraction by * and

C* _ O_’ﬁ(’l"ggLa - 2aSOLﬂ)
B 2(/62La +a'72Lcm) ’

b =a" by,  b° =a"hb;.

V2 = h2a? — B2,

Since vo'o(x) are hp(2), F™ with an (o, 8)-metric is Douglas space, if
and only if B¥Y = By — By* are hp(3). Form (2.1) and (2.3) we have

Lg, . D 2L
S0 (sloy? — SToyl) + 22

24)  BY =
(2.4) I AL,

Cr 'y’ — by').
The following lemma ([9]) is used for latter:

LEMMA. A system of linear equations L;, X" =Y;, (l,+p) X" =Y
and (Yiy* = &?) in X has the unique solution X' = LY* + (Y —
LY p ), where Y = ¢""Y, and 7 = L/ L.

3. Randers change of Douglas type

For a Randers change: L — L = L(x,y) + plz,y), plz,y) =
p(:r,‘)iyz,
we may put

(3.1) G =G+ D'
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Then éﬁj = Gij + Dij and Ej"k = sz'k +Djik, where Dij = é’_j;DAé and
D;% = 8 D;. The tensors D*, D'; and D}, are positively homogeneous
in ¥* of degree two, one and zero respectively. In the following the
explicit form of D' is necessary. To find this, we deal with equation
Lijix = 0, where L;j;; is the h-covariant derivative of L;; = hy;/L in
CT. Then

OxLij = Lije G + Lo B + Lin Fy7

Since Eij = Lij and Iijk = Lijk hOld,
Lijk = Lijr(G"x + D"1) + Ly (B — Di"k) + Lir (F3" + D7),

which imply
Lij,-Drk + Lerirk + LirDjrk = 0

Thus transvection of this equation by ¢* yields
(3.2) 9Li; D" + Lo; D"y + Ly D"; = 0.
Next, we deal with L;j; = 0, that is,
0;L; = LiyG"j 4+ L Fy"5,
8L = Lir(G"; + D7) + (Lr + p) (Fi"5 + °D"),

where “D;7; = F;". — F;". Substitution of the equations above in
0;L; = 0;L; + 0;p; Jeads to

Oipi — pr Fi"j = Lie D75 + (I + pr) °Dy7 5.
Then we have

(33) QEij = LirDrj + LJ.'T.DT-L' + 2(17 + p,.) th_'rj’

(3.4) 9F,; = Ly D"; — Ly D",
Therefore (3.2) and (3.4) give

(3.5) LiyD"; = Fij — Lijr D"
and transvection of {3.3) by ¥ shows

(3-6) (l-r + pT)DTJ = 'Uyl — Lj'pDr.
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Furthermore transvection of (3.5) and (3.6) by 1’ leads to
., : 1 o
(3.7) (@) LaD"=Fgy’', () (b+p)D" = SEiy'y.

The equations (3.7)(a)(b) constitute a system of linear equations respec-
tively. Applying Lemma to (3.7), we have

. 11 .
(3.8) D'=LFy+ f(-z*Eg(] — LFo)y*,

where F*; = g'"F,; and F; = p,F";. Thus we have the following

PRrOPOSITION 3.1. ([9]) The tensor D* of (3.1) arising from a Ran-
ders change are given by (3.8).

From (3.1) and (3.8) we have
Gyl -Gy = Gy — Gy + L(F'oy’ — Floy).

Suppose F™ is a Douglas space, that is, Gy’ — G4 are hp (3). Thus
we have

ProprosiTION 3.2.  Let £ be a Douglas space and F" a Finsler
space which is obtained by Randers change by p. F" is also a Douglas
space if and only if L(F*yy’ — Fiyy') are hp (3).

The Randers changes is called projective Randers changes if all the
geodesic curves are preserved under the Randers changes. According to
Hashiguchi-Ichijyo ([4]), o« Randers change is projective, if and only if p;
are gradient vector fields. In this case (3.8) is reduced to D' = Eygy'/2L.
Therefore D*y/ — D7y* = (. Thus we have G o/ — G o' = Giy? — Giy.

On the other hand, it is well-known that the Douglas tensor is pro-
jectively invariant. Hence, if a Finsler space is projectively related to a
Douglas space, then it is also a Douglas space. Thus, from Hashiguchi-
Ichijyo’s theorem, we have the following

THEOREM 3.3.  Let F*"(M™,L) — ?(M", L+p;) be a projective
Randers change. If F” is a Douglas space, then F is also a Douglas
space, and vice versa.
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4. Generalized Kropina spaces

Hereafter we consider a special Randers change of certain («,(3) -
metric as follows: L{a,3) — L = L(a, 8) + (3, that is, the 1-form 8 of
modification coincides with 1-form 3 of (o, 8)-metric. In this section we
deal with a Finsler space F™ (n > 2) with a generalized Kropina metric.
The metric of F* is L = o't™3"™, where m is a constant # 0, —1.
We consider the condition for a Finsler space ' = (M™, [, + 3) which
is obtained by a special Randers change of a generalized Kropina space
Fr = (M", L = a'*™3 ™} to be of Douglas type. It has been known
([8]) that a generalized Kropina space is of Douglas space, where o? # 0
{mod. 8), if and only if b;;; are given by

1.
(4.1) Sij = b_g(b $j — b;8;),

1—-m

)62 (S.,,bj — Sjbz)

(4.2) 14 = T me

k 2
m{(l - m)bzb] +mb CLU'} +

For F', (2.3) gives

2{(1—m)#* + mb?e2}H{ (1 + m)FB”
(4.3) +(mo? — "B (shey? — Ty )} — maP{(1 -+ m)roo
+280(m02 _ al—mﬁm+1)}(biyj _ b_’;yt) =0,

which are equivalent to
(4.4)

2{(1-m)B* + mb%a®}{(1 + m)ﬁﬁij
+ma?(stey’ — 87py")} — ma® {(1 +m)ropf + 2msoa’} by — by')
—20' 7" BTH{(L — m) B + mbPa® Y (s'oy’ — 570y
—msoal(b'y’ — by')] = 0.

Then it will be better to divide our consideration into two cases as
follows:

(I) o'=™8™+! : rational in (y'), that is, m : odd integer,

() @'=™p™*1 . irrational in (y*), that is, m : the others.
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The case (I} : First we are concerned with m < 1, where m is an odd
integer. Multiplication of (4.1) by 8= ! leads to
2{(1 - m?)F? + mbP P H(L +m)8 "B + (ma?f~ "
(4.5) — o ™) (st — s7out)} — ma{(1 + m)roef™
+ 2s9(maf7IT™ — ot T by - Byt =0,

Since B” are supposed to be hp(3), the term in (4.5) which seemingly
does not contain o is 2(1 — m?2}32-"B" only, and hence we must have
hp(3 —m) ug_ ., such that
(4.6) 201 — m3)gr "B = o2l

We treat of the general case o® # 0 (mod. 3). (4.6) shows that there
exist Ap(1) u¥ satisfying ug ., = 82~™u". Then (3.4) is reduced to
(4.7) 2(1 — m3)B" = au¥,

If m # 1, that is, F™ is not a Kropina space, then (4.7) gives B and
(4.5) can be rewritten in the form
(4.8)

(1= mygtma} { £ oo sy o))
—m{(1 +m)rgeB~™ + 2sp(ma’FTI ™ — oM}y — ¥y =0

Collecting the terms of (4.8) which seemingly do not contain 3, we can
put _
2mal T b (s'gry’ — &7 oyt) — so(by! — Byt)} = Bud .

where 'v%"_ m are hp(2 —m). Consequently we have

(4.9) b (s'oy’ — s oy’) — s0(b'y’ — by*) = oV
and v = 2mal~™v¥ with hp (1) v¥. Thus (4.8) is reduced to
(4.10)

{1 = m)3% + mb2a?}

: — ﬁ—muij + 2m2a2ﬁ—mvij

+ 2[m(T — m)ﬁl_m - a_l_m{(l — m)ﬂ2 + mb2a2}](sigyj - sjgyi)
—m{(l+m)re8 ™ — 250a1_m}(biyj — by )=0
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Consequently (4.9) is obtained as follows:
(4.11) b?s;; = bis; + bjs;, provided that &% # 0.
That is, (4.1). From (4.11), (4.9) is reduced to v¥/ = y's? — y/s* and

(4.10) is rewritten in the form

(4.12)
—m, if -m —1l-m
{1 = myg o+ mprey { B0 2P e POy

+ { [2m(l —m)B* =™ — 20717 {(1 — m) B + mba’}] ‘Z—g

— m{(]_ + m)’l"uuﬁ_m — 250a1*m}}(biy9‘ — bjyt) = 0
Multiplying (4.12) by 5™, we obtain

(4.13)
uij —1—-m 2l4+m
(= myg? + it { AT oy}

+ { [2m(1 = m)8 — 20717 {(1 — m)8 + mb*a?}] 73

—m{(1+m)roo — 230a1_mﬁm}}(biyj — ¥yt =
Transvecting (4.13} by b;s;, we have
(4.14)

{(1 —m)B + mb*a?} {lTln;uéjb,-sj + b2—2(m - a'l_m61+m)sjsj,6}
= {m{(l 4 m)rog — 2500~ ™}

~2[m(1—m)p - T (L= )+ mbta?)] 32 (s
Suppose that there exists u = u;{z)y’ such that (1 — m)3% + md?a? =
b%squ. Then this is written in the form
2{(1 — m)b;b; + mb®a;;} = b*(s;u; + s;u;).

Transvection by b'b’ leads to the contradiction b° = 0. Therefore (4.14)
shows that we have a function k() satisfying

. . 2 —iem ma i
1 — m’uzjbi.ﬁj +- b—2(m — & t ﬁ1+ )SJSjﬂ = h.l (3‘,‘)5280,
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{{m(l +m)rog — 2m30011_mﬁm} -9 [m(l —m)f — a_l_mﬁm.

{(1 — m)B? + mb*a?}] 2—3}30 = {(1 — m)B? + mb?a?}hy(x)s0.

If sg # 0, then we get from the latter

(4.15)

o0 = g (= mgt el 2T ot
Thus (4.13) gives u* of the form

(4.16)

wd = BE) 0 mtom gy (gig Ty (2)(1—m) (B b,

b

Since 7gq is hp (2) from (4.15), a~1=™B'*™ must be Ap (0). The con-
dition for =1~ 8™ to be hp (0) is m = —3 alone. Thus substituting
m = —3 in (4.15), we have

(4.17) Tog = ﬁl—éf’l(amz — 3b%a?) —

480

3623

(o® +38%).

(4.17) shows that there exists hy(z) satisfying sg = ha(x)5. Then (4.17)
is reduced to

3

(418) 1y = (2h13(:1:) B 4h22(3:)) bibs — (1)2}1;(:1:) N 4?;;;)(22:))

That is, (4.2). If sy is assumed to vanish, then (4.11} gives s;; = 0 and
(4.13) is reduced to

{(1 —m)A? + mb®a}u¥ = m(1 — m*)reo (B9’ — B7y°).
Transvection by b;y;(y; = a,-y") leads to
{(1 — m)B* + mb a®}uby; = m(1 — m®)roe(b%a® — °).
It is easy to show that (1—m)3%+mb2a? (= m~y%+5?) is not contained
in b2a? ~ B2 (= v?). Consequently it is contained in rgg ; there exists

a function hz(z) such that rgg = ha(x){(1 — m)3? + mb%a?}. Therefore
(4.18) holds in this case, too.
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Next, we deal with m > 1. Multiplication of (4.3) by a~!*™ leads to
so = 0 and s;; = 0. Thus we obtain rog = h3(z){(1 — m)3% + mb?a?} in
common with 55 = 0.

The case (II): Since o' ~™3™*! is irrational in (y°), (4.4) is divided
into two equations as follows:

2{(1 — m)? + mb2e®H(1 + m)BB” + ma(sioy’ — s7oy')}

(4.19) . ST
—ma?{(1 + m)ree + 2msea’ } (b’ — byt) =0,

(4.20) {(1 - m)g* + mb*a®}(s"oy’ — sToy’) — msoa® (b'y’ — ¥y") = 0.
Transvecting (4.20) by b;y;, we get

spa{(1 — m)B? + mb2a?} — msga® (b%a? — §%) = 0,
which implies sya?3 = 0. Hence we get g = 0, that is, s; = 0. (4.20) is

reduced to stgy? — s7gy* = 0. Transvection of this by y; leads to s%y = 0.
Therefore s;; = 0. Substituting s;; = 0 in (4.19), we obtain

(4.21) 2{(1 - m)B? + 1rnbzoz2}§i:Ji — malrg(biy’ — Byt) = 0.

The term in (4.21) which seemingly does not contain o is 2(1—m)62]§£j
only, and hence we must have Ap(3) uy satisfying

(4.22) 2(1 - m)B°B” = ou¥.

Suppose a? # 0 (mod. 8). Then (4.22) is reduced to B” = a?u¥, where
u' are hp(l). Hence (4.21) leads to

(4.23) 2{(1 — m)B?% + mb?a?}u — rog(biy’ — Byt) = 0.
Transvecting (4.23) by b;y;, we obtain

2{(1 — m)B% + mb*a® }u by, — roo(h?a® — 8%) = 0.
Thus there exists a function h4(z) such that

2(m — Duby; — rog = ha(x)a?, 2mb*utby; — birop = ha(z) .



The Randers changes of Finsler spaces 513

Eliminating u"/b;y; from the above equations, we have
b*roo = ha(x){(m — 1)5% — mb*a?},
which implies

h4 (93)
h2

(4.24) Tig = {(m - 1)b,;bj - mbzaij}.

From s;; = 0 and (4.24) we obtain
(4.25) bi;j = h5($){(m - l)bibj - mbzaij},

where hs(z) = ha(z)/b?.
Consequently, if (4.25) is satisfied, then s;; = 0 and

Ton = h5(:c){(m — l)ﬁz - mbzaz},

from which B of (4.4) are hp(3). Hence (4.18) holds in this case, too.

In any case we obtain b;,; by (4.11) and (4.18), then B~ are given by
(4.7) together with (4.16). Consequently a Finsler space F'=(M" L+
3) (n > 2) with non zero b? which is obtained by Randers change of a
generalized Kropina space F* = (M™ L = ot™3"™ m # £1,0) is a
Douglas space, if and only if b;,; are given (4.11) and (4.18). That is,
(4.1) and (4.2) hold.

On the other hand, it has been known ([8]} that o generalized Kropina
space F™ (n > 2} with non zero b2 is a Douglas space, if and only if b;;
are given by (4.1) and (4.2). That is to say, the case sg # 0 for F™ to be
a Douglas space corresponds to the case m = —3 for F' tobea Douglas
space and the case sp = 0 for F™ to be of Douglas type corresponds to
the case m # —3, m € R for F" to be of Douglas type. Thus we obtain
the following

THEOREM 4.1. Let F* (n > 2) be a generalized Kropina space
with L = o'tT™37"™ m being a constant # +1, 0. A Finsler space F"
which is obtained by a special Randers change of F™ with non zero b?
of Douglas type is also of Douglas type, and vice versa.
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5. Kropina space

Let F™ be a Kropina space with L = o2/8 and F' = (M",I) a
Finsler space Wthh is obtained by Randers change of I™ = (M", L).
From (2.4), BY = B'y? — B‘Ty in F* are written as

. 4
(51) EZJ = B'ij_‘_i(sioyj_sjoyi)_ a"spLaa

By —by).
La La(ﬁzLa + a'YzLaa) ( v v )

Suppose F" is a Douglas space. Since B% are hp(3), the necessary and
sufficient condition for ' to be also a Douglas space is that

o .. . a430L . .
L gtanyd ol et — o Lo d i
L’cx (S oY oY ) ch(,B2La ¥+ a’}/zLaa) (b U bjy )

are hp(3). Thus we have the following

ProproSITION 5.1. Let F™ = (M™, L) be a Finsler space with an
(c, B)-metric of Douglas type. Then F' = (M™, L+3) which is obtained
by a special Randers change of F™ is also a Douglas space, if and only if

atsoL A
oo i3 _ )
La(ﬁzLa+a'72Lm)(by b?y)

(5.2) W¥= Li(sioyj - sToy’) -
are hp (3).

We suppose F" is a Douglas space. The condition for F'= (M™, L+
3) to be a Douglas space is that (5.2) is hp (3). From (5.2) we have

W = g(sioyj — sloy’) — 3{3(6* ~ by,

Since B and W/ are hp(3), B~ are hp(3), that is, E is a Douglas
space. Thus a Kropina space F™ is of Douglas type, then a Finsler space
F" which is obtained by a special Randers change of F™ is of Douglas
type also. We consider the condition for a Finsler space which is obtained
by a special Randers change of a Kropina space to be of Douglas type.
For F' = (M", T =a?/8 + f3), (2.4) gives

(5.3)

MU o
BY = —(B*-a?)(s'oy’ — oy ) +

53 ==z {roof—so(8— ) Hb'y —b'y").

262 B8
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Since the terms (8/2)(s*0y” — s7oy) + (1/26%8)(roo — s08)(b'y’ — b1y')
are hp(3), these terms may be neglected in our discussion and we treat
only of

—U_az 80 04, i i oo
65) W= {0 -~ oy - T}

For n > 2, o? 2 0 (mod.f) ([3]). Therefore there exist hp(l) v¥ =
v (z)y* such that

(5.6) %g(biyj —By') — (s’ —~ s oy’) = Bu.
This equation is written in the form

1. . , . . .
55 0 (s8] + 518)) — b (sn8 + 5101}
(5480 4 8589 1) + (87180 + 871 80) = bav? + bt

(5.7)

Transvection of (5.7) by a"* leads to

5.8 L' — bst) — 25 = bruid

(5.8) b—2(3—~s)—s—fur.
Next, transvecting (5.7) by b*, we have

(5.9) (s'67 + bs? ) — (870% + b7s'y) = b2} + bypb™v.

k k k T
Contraction of (5.7) with j and A leads to
/1 . . ,

(5.10) nkb—zblsk — sik) = bouy — by’
Substituting b"v¥ of (4.8) in (4.9), we have

bu =25y + {b“s*”k — Vs’ + 86 — 88, + b—2(s’b-7b;c - s’b‘bk)},
which imply

biutr, = (n — 1)8*, b2h, vt = bisy — b2y,
k
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Consequently (5.10) leads to

1
(511) Sij = b—z(bié‘j - bjSi)‘

Then (5.5) gives

———'tj az i J _7 i
W= @(5 ¥ — &y,
which are hp(3). Therefore (5.11) is the necessary and sufficient condi-
tion for F' to be of Douglas type.

On the other hand, it is known ([8]) that a Kropina space F™(n > 2)
with b% # 0 is of Douglas type, if and only if (5.11) is satisfied. Thus we

have the

THECREM 5.2. A Finsler space Fn(n > 2) which Is obtained by a
special Randers change of a Kropina space F™ with b* # 0 is of Douglas
type, if and only if the Kropina space F™ is of Douglas type.

6. Matsumoto space

We consider the condition for a Finsler space F' = (M™ L + 8)
which is obtained by a special Randers change of Matsumoto space F™* =
(M", L = o*/(a — )) to be of Douglas type. It is known ([6]) that a
Matsumoto space F™(n > 2) is of Douglas type, if and only if b;; = 0.
Hence, for a Matsumoto space £ of Douglas type, (2.4) leads to WY =
0, that is, BY = B%. Thus if o Matsumoto space F™ is of Douglas type,
then a Finsler space which is obtained by a special Randers change of
F™ is also of Douglas type. It is known ([8]) that a Matsumoto space
F*(n > 2) is of Douglas type, if and only if b;;; = 0. Hence, for a
Matsumoto space F" of Douglas type, (5.2) leads to WY =0, that is,

-t

BY = BY. Thus if a Matsumoto space F" is of Douglas type, then a
Finsler space which is obtained by a special Randers change of F™ is
also of Douglas type. For F, (2.3) gives

(6.1) :

{a(1 + 2b%) — 38} (a — 26)?“ — (2% — 208 + B*)(s'oy’ — 87 0y")}
+a{280(20° — 2 + %) — roo(e — 28)}(b'y - V'y') = 0.

Suppose that ' be a Douglas space, that is, B be hp(3). Since a
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is irrational in (y*), (6.1} is divided as follows:
(6.2)

{(1+26%)0? + 68%Y B +{20°B(1 + 26*)+38(202 + %) }(s o/ —s o1s")
— (4500 + ropa®)(b'y! — ¥y') =10,

(5+46°)8B" + {(1 + 26%)(20% + 8°) + 662} (s 0y’ — s70y/)

(6:3) 2 2 i, g iy
— 2{50(20 + ) + rooB)} by’ — biy?) =0,

Eliminating B’ from these equations, we have
(6.4) A(s'oy’ — sPoy’) + B’y — Vy’) =0,
where we put

A=0a?(213° +126%b? +128%b* — 2a% — 8a2b? - 8alb*) - 2784,
B = o {50(68% — 128%b% + 402 + 8a2b?) — 3rgeB} + 126 (808 + r00).

Transvection of (6.4) by b;y; leads to
(6.5) Asga?® + B(b%a? — 32) = 0.

Since the terms 12(so8 + 700)3° of (6.5) seemingly do not contain o?,
we must have hp(5) vs such that

(66) 12(80)8 + Too)ﬁs = 012'1_?5.

In the first case of v5 = 0, we have rog = —s¢3 from (6.6}, and (6.5) is
reduced to

{62(178% + 138%b? — 202 — 4026%) + 128* (b — 3)}s0 = 0.
If the coefficient of sy does not vanish, then
o (178% + 138%0% — 20° — 40%b%) = 123*(3 — b?).
Since we suppose o # 0 (mod.3), the above assumption is a contra-

diction. Therefore we obtain sp = 0 and rg9 = 0 from (6.6). Next,
in the second case of vs # @, (6.6) shows the existence of a function
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k1(z) satisfying vs = k(z)3%, and hence roo = k2(z)a® — sof3, where
ko(z) = k1 (x)/12. Then (6.5) is reduced to
(6.7)
Asg+{s50(98%2—1252b% + 402 +80%b?) —3ks (2) B0 —48°) Hb o*— %) = 0.
Only the terms —36s03* + 128%%sy — 12k2(z)8° of (6.7) seemingly do
not contain @?, and hence we must have hp(3) vs such that

12{80(b2 - 3) — kg(.’ﬂ)ﬁ}ﬁ4 = az’f)g.
From o? £ 0 (mod.3) it follows that v3 must vanish, and hence sp(b* —
3) = ky(z)8, that is, (5> — 3)s; = kz(z)b;. Then transvection by b*
gives ky(x)b? = 0. In case of ky(z) = 0, we get b =3 or s; = 0. 1If
b? = 3, then (6.7) is reduced to 14s0(48% — o*)a? = 0. Thus we obtain
sg = 0 and rpo = 0. Next, if s; = 0, then we have sop = 0 and rg0 = 0,
too. On the other hand, in the case of b? = 0, (6.7) is reduced to
50(1702 6% — 2a* — 368*) + 3k2(z)5%(a® — 46°) = 0, which implies 5o =
and kz(z) = 0. Therefore, for n > 2. both the cases of v; = 0 and v5 # 0
lead to rgp = 0 and sp = 0. Hence (6.4) is reduced to stgy’ — s’ oy’ =0,
and transvection by y; gives s’y = 0. Finally r;; = s;; = 0, that is,
bi;j =0,

Thus a Finsler space ' = (M*,L 4+ 8) (n > 2) which is obtained
by a special Randers change of a Matsumoto space F" = (M", L =
a?/(oc— 3)) is Douglas space, if and only if b;;; = 0. On the other hand,
M. Matsumoto proved ([8]) that a Matsumoto space F™ (n > 2} is of
Douglas type, if and only if b;;; = 0. Thus we have the following

THEOREM 6.1. A Finsler space F (n > 2) which is obtained by
a special Randers change of a Matsumoto space F™ of Douglas type is
also of Douglas type, and vice versa.

On the other hand, it has been shown ([1]} that Matsumoto space is
a Berwlad space, if and only if b;;; = 0. Then according to Theorem 6.1
we have the following

COROLLARY 6.2. LetF (n > 2) be a Finsler space which is obtained
by a special Randers change of a Matsumoto space £". If F" is a
Douglas space, then F" is a Berwald space.

7. Finsler space with L = a + 8%/a

We consider a Finsler space F* = (M", L) with an («,3)-metric
L = a + 3%/a. This metric may be regarded as constructed from o and



The Randers changes of Finsler spaces 519

one more Riemannian metric v/a? + 32, and it is thought of as desirable
in the viewpoint of geometry and applications ([8]). For F' = (M™, I)
which is obtained by a special Randers change of F* = (M™,L = a +
B%/a), (2.3) gives

g 2
BY :%@(Sioyj - Sjoyi)
o {reo(a® — §°) — 2s00”(a + 26)}
(a? — B2){a?(1 + 2b%) — 332}

(7.1)
(b'y’ ~ ¥y’).

Suppose that 7 be a Douglas space, that is, B be hp (3). Separating
(7.1) into the rational and irrational terms of y*, we have

{a®(1+26%) - 362}{(o? — B*)B" - 2026(s'0p” — s oy")}

— & {roo(a® — %) — dsoa” B} ('’ ~ by

+ a2sgal By — Vyt) — a?{a?(1 + 2b%) — 38 }(s'oy’ — sToy’)] =0,
which yield two equations as follows:
{o®(1 + 26%) — 382 H{(e? - B2)B" — 2a*B(s'0y? — sTou)}

(7‘2) 2 2 2 i i
— o*{reo(a® — %) — 4s0a” BY(B'y — by} =0,

(7.3)  2s002(b'y’ — by®) - {o?(1 + 26%) — 38%} (s'or® — s7oyt) = 0.
Transvecting (7.3) by b;y;, we obtain
2spa” (bPa? - §%) — {a®(1 + 26) — 38%}spa® =0,

which implies s90%(3% — a?) = 0. Therefore we get s; = 0. Hence (7.3)
is reduced to sioy’ — s7yy* = 0, and transvection by y; gives sy = 0.
Consequently s;; = 0. On the other hand, substituting (7.3) in (7.2),
we have

(7.4)  {a2(1+ 26%) — 382YBY — o {roo(blyf ~ biyt)} = 0.

Only the terms 3B_2_§ij of (7.4) seemingly do not contain o®. Hence we
must have hp(3) vy satisfying

—tF
(7.5) 36°BY = ou¥.
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For the sake of brevity we suppose o # 0 (mod.3). Then (7.5) is

reduced to B = v, where v/ are hp(1). Thus (7.4) leads to
(7.6) {a2(1 + 2b%) — 38} — roo(bly? — By’) = 0.
Transvecting (6.6) by b;y;, we get

{2(1 + 2b%) — 38 }buliy; — roo(b%0® — B%) = 0,
which imply

o2{(1 + 26%)buy; — bPrge} = 32(3b;vy; — roo)-
Therefore there exists a function fi(z) satisfying

(1 + 26¥)bw' y; — bProg = f(2)57, 3bvy; — rop = fi{x)e’.

Eliminating bv"y; from above the equations, we obtain

2\ 2 a2
7 o = fu(e) L2 =

From (7.7) and s;; = 0,
(7.8) biy = f2(2){(1 + 2b%)ai; — 3b:bs},

where fa(z) = filz)/ (6% —1).
Conversely, if (7.8) is satisfied, then s;; = 0 and

roo = fo(@){(1 + 26%)a? — 357},

from which B” of (7.1) are hp(3). Thus we have the following

THEOREM 7.1. A Finsler sapce F (n > 2) which is obtained by
a special Randers change of a Finsler space F™ with an (e, B)-metric
L =a+B2/a (b # 1) of Douglas type, is also a Douglas space, and

vice versa.
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