References
- A. Carbone, A note on complementarity problem. Internat. J. Math. & Math. Sci. Vol. 21(3) (1998), 621-623. https://doi.org/10.1155/S0161171298000878
- S. S. Chang and N. J. Huang, Generalized multivalued implicit complementarity problems in Hilbert spaces, Math. Japonica 36(6) (1991), 1093-1100.
- G. Y. Chen and X. Q. Yang. The vector complementarity problems and its equivalences with the weak minimal element in ordered spaces, J. Math, Anal. Appl. 153(1990). 136-158. https://doi.org/10.1016/0022-247X(90)90270-P
- R. W. Cottle, J. S. Pang and R. E. Stone, The Linear Complementarity Problem, Academic Press. New York. 1992.
- R. W. Cottle and J. C. Yao, Pseudo-monotone complementarity Problems in Hilbert space, J. Opti, Th. & Appl. Vol. 75(2) (1992), 281-295. https://doi.org/10.1007/BF00941468
- F. Facchinei and J. S. Pang, Finite-dimensional Variational Inequalities and Complementarity Problems, Springer-Verlag, New York, 2003.
- K. Fan, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305-310. https://doi.org/10.1007/BF01353421
- Y. P. Fang and N. J. Huang, The vector F-complementarity problem with demipseudomonotone mapping in Banach spaces, Appl. Math. Lett. 16 (2003), 1019-1024. https://doi.org/10.1016/S0893-9659(03)90089-9
- F. Ferro, A minimax theorem for vector-valued functions, J. Optim, Theory Appl. 60 (1989), 19-31. https://doi.org/10.1007/BF00938796
- N. J. Huang and J. Li, F-implicit complementarity problems in Banach spaces, Z. Anal. Anwendungen 23 (2004), 293-302.
- G. Isac. Complementarity Problems, Lecture Notes in Math. No. 1528, Springer-Verlag. New York. 1992.
- G. Isac. Topological Methods in Complementarity Theory, Kluwer Academic Publishers. Dordrecht, Boston, London. 2000.
-
G. Isac. Condition
$(S)_{+}^{1}$ , Altman's condition and the scalar asymptotic derivative: applications to complementarity theory, Nonlinear Analysis Forum Vol. 5 (2000), 1-13. - G. Isac. A special variational inequality and the implicit complementarity problems, J. Fac. Sci. Univ. Tokyo 37 (1990), 109-127.
- G. Isac, A generalization of Karamardian's condition in complementarity theory, Nonlinear Analysis Forum Vol. 4 (1999), 49-63.
- G. Isac, On the implicit complementarity problem in Hilbert spaces. Bull. Australian Math. Soc. 32 (1985), 251-260. https://doi.org/10.1017/S000497270000993X
- G. Isac and Jinlu Li. Complementarity problem, Karamardian's condition and a generalization of Harker-Pang condigion. Nonlinear Analysis Forum Vol. 6(2) (2001), 383-390.
- S. Karamardian, Generalized complementarity problem, J. Optim. Theory Appl. 8 (1971), 161-168. https://doi.org/10.1007/BF00932464
- B. S. Lee, M. F. Khan and Salnhuddln, Vector F-implicit complementarity problems with corresponding variational inequality problems, Appl. Math. Lett. 20 (2007), 433-438. https://doi.org/10.1016/j.aml.2006.05.010
- J. Li and N. J. Huang, Vector F-implicit complementarity problems in Banach spaces, Appl. Math, Lett. 19 (2006), 464-471. https://doi.org/10.1016/j.aml.2005.07.003
- K. Q. Wu and N. J. Huang, General mixed vector F-implicit complementarity problems in Banach spaces, Journal of Applied Analysis Vol. 14(1) (2008), 73-88. https://doi.org/10.1515/JAA.2008.73
- H. Y. Yin, C. X. Xu and Z. X. Zhang. The F-complementarity problems and its equivalence with the least element problem. Acta Math. Sinica 44 (2001). 679-686.