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MAXIMUM MODULI OF
UNIMODULAR POLYNOMIALS

ANDREAS DEFANT, DOMINGO GARCIA AND MANUEL MAESTRE

ABSTRACT. Let 37, ,_. $a2”, z € C" be a unimodular m-homoge-
neous polynomial in n variables (i.e. |sq| = 1 for all multi indices
a), and let R C € be a (bounded complete) Reinhardt domain. We
give lower bounds for the maximum modulus sup.cp | 3| 4)=m Sa2”|s
and upper estimates for the average of these maximum moduli
taken over all possible m-homogeneous Bernoulli polynomials (i.e.
So = %1 for all multi indices o). Examples show that for a fixed
degree m our estimates, for rather large classes of domains R, are
asymptotically optimal in the dimension n.

0. Introduction

In his study (5] of Dirichlet series ) °, 92 Harald Bohr considered
vertical strips of uniform, but not absolute convergence of such a se-
ries. More precisely, he considered those nonnegative numbers A and
B for which a given Dirichlet series > > ; 92 converges conditionally
(i.e., absolutely) in the half plane {s € C : Res > A}, but con-
verges uniformly on the half planes {s € C : Res > B+¢}, € > 0.
Bohr asked for the maximal possible width d := B — A of such a strip,

and proved that d < % Bohnenblust and Hille in [6] were able to

show that d = % In the context of nuclearity and absolute bases for
spaces of holomorphic functions over infinite dimensional domains, Di-
neen and Timoney in [14] gave a new proof based on probabilistic meth-
ods. Finally, Boas in a beautiful paper [2] produced a proof in which
one of the key ingredients is the Kahane-Salem-Zygmund Theorem (see
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[18, Theorem 4, Chap. 6, pp.70-71]). This probabilistic result, for
each degree m and each dimension n, assures the existence of an m-
homogenous Bernoulli polynomial P(z) =3, af=m Saz® on C™ for which

sup{|P(z)| : |=x| < 1, k =1,...,n} < Ccn" Vviogm, where C de-
pends neither on n nor on m. A similar argument was used by Boas and
Khavinson [3, proof of Theorem 2] in their study of Bohr’s power series
theorem in several variables (see also [1], [9] and [13]).

The main goal of this paper is to give, in a systematic way, upper and
lower estimates for the maximum modulus sup,cp | Z| af=m Saz®|, Where
Z| al=m 8q2% is an arbitrarily given m-homogeneous Bernoulli polyno-
mial in n variables (i.e., a polynomial of the form Z| al=m Sa2%, where
the coeflicients s, for all a are signs) and R some Reinhardt domain in
C™. In section 2 we obtain for every unimodular m-homogeneous poly-
nomial (i.e., every polynomial of the form Z‘M:m $a2%, z € C™, where
sq € C satisfies |s,| = 1 for all multi indices «) and every Reinhardt do-
main R lower bounds for the maximum modulus sup,cp | Zl al=m Sa2%|.
In section 3 we give upper estimates for the average of such maximum
moduli taken over all possible m-homogeneous Bernoulli polynomials.
As a consequence we prove for certain classes of domains the existence
of m-homogeneous Bernoulli polynomials which have maximum moduli
as small as possible. Moreover, we apply our results to various concrete
classes of domains R in C™.

1. Preliminaries

We shall use standard notation and notions from Banach space theory
as presented e.g. in [22] or [28]. If X is a Banach space over the scalars
K =R or C, then X* is its topological dual and By is its open unit ball.
We denote the Banach-Mazur distance of two Banach spaces X and YV
by d(X,Y).

For all needed background on polynomials defined on Banach spaces
we refer to [12] and [16]. P(™X) denotes the space of all m-homogeneous
scalar valued polynomials P on a Banach space X, which together with
the norm (| P| := sup{|P(z)| : ||z|| < 1} forms a Banach space. A
subset U of C" is called circled if Az € U for all A € C, |A| = 1. A
complete bounded Reinhardt domain R C C" is a bounded domain
that is complete and n-circled, i.e. if x = z1e3 + -+ + zpen € R, then
/\(eelizlel +-- -+ea"iznen) € Rforall e C, |A|<landallby,...,0, €
R. A basis (x,) of a Banach space X is said to be unconditional if there is
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a constant C > 1 such that for all uq,...,u, € Kand all 51,...,8, € K
with |sg| < 1, we have || > p_q skpki]| < Cl| D k1 txzr|l; in this case
the best constant is denoted by x((z)), the unconditional basis constant
of (z,). All unconditional bases considered in this paper are normalized.
For X = (K", ||.||) denote by xmon(P(™X)) the unconditional basis con-
stant of the monomials {2 : |a| = m}.

We call a Banach space X = (K", ||.]|) symmetric if the canonical
vectors ey, form a symmetric basis, i.e. |lz|| = [| X y_; SkTxexl for
each z € X, each permutation 7 of {1,...,n} and each choice of scalars
s, with |sg] = 1. A Banach space X for which /1 C X C ¢g (with
norm 1 inclusions) is said to be a Banach sequence space if the canon-
ical sequence (er) forms a l-unconditional basis; it is called symmetric
if ||z = || > pey skZxryexl| for each € X, each permutation m of N
and each choice of scalars s, with |sg| = 1. Recall finally that a Banach
lattice X is said to be 2-concave and 2-convex, respectively, if there is

a constant C' > 0 such that (3 ;_; Ha:k||2)1/2 < CI(Xk=1 |xkl2)1/2||,
and ||(Xr 4 kalz)l/zll <C(3h i llzell?) 2 for all z4,... 20 € X, Te-
spectively. Here the best constant is denoted by M2 (X) and M @) (x),
respectively (see [22]). For the notion of cotype ¢, 2 < g < o0, of a Ba-

nach space X (the cotype constant is denoted by Cy(X)) and its relation
with convexity and concavity we also refer to [22].

2. Lower bounds for the maximum modulus of unimodular
homogeneous polynomials on Reinhardt domains

Fix a degree m and a dimension n. We call an m-homogeneous poly-
nomial

(2.1) Z 8q2%, 2€ C"
la|=m
unimodular whenever all coefficients s, € C satisfy |s,| = 1. If all

8o € C are signs +1 and —1, then we speak of an m-homogeneous
Bernoulli polynomial. Obviously,

n+m-—1
|3 et X el = (V1)
2€Byn, Ja|l=m laj=m m

Conversely, since the monomials 2%, |a| = m, form an orthogonal system
of square integrable functions on the n-dimensional torus 7,, in C” (the
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n-th cartesian product of Se; endowed with the product measure of the
normalized Lebesgue measure o), we get

n+m-—1 1/2 a2 1/2
() =) X e

(2.2) " laf=m
o n+m-—1
< sup | ) saz®|< :
ZGB[& laj=m m
Hence, the obvious estimate %nm < ("+$_1) < n™ gives
1
(2.3) ——n™? < sup | Z $a2% < n™.

vm! 2€Bm,

Let us improve the lower bound. We want to show that there is a con-
stant ¢, > 0 such that for each unimodular m-homogeneous polynomial
as in (2.1)

lafj=m

(2.4) emn™ < sup | z $a2%.
ZEB[g’o

lal=m
We are going to obtain this lower estimate as a consequence of the
following more general result.

ProrosITION 2.1. Let X = (C™,||.||) be a Banach space such that
the canonical basis (ex)}t_, is I-unconditional. Then for each m

(2.5) 1 (supecny Yoica |l)™ < sup | Y saz?.

m! Xmon(P(mX)) 2€Bx lal=rm

Proof. For each unimodular m-homogeneous polynomial
Z $02%, z € C"
|aj=m

we have

(sup D7 lzel)™ = (sup | > z)"

2EBx =1 z€Bx k=1

|
m. a
Sut I Z aq! o !
26Bx lal 1:°° " Upe
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D=
z€EBx |a=m *On:Sg

< MxXmon (P X)) sup | Z Sa2%|.
z€EByx laj=m
O

By [8, Theorem 3] we know that for each m there is a constant d,,, > 0
such that

(2.6) Xomon(P("€)) < dn T
Asn™ = (sup,¢ By D=1 |zk|)m, inequality (2.6) together with Propo-

sition 2.1 gives as desired (2.4) with ¢, := (m!d,,) 1. In contrast to (2.6)
we know that Xmon(P(™€})) for fixed degree m is uniformly bounded
from above in the dimension n (see [9, (4.6)]), more precisely

m gn mm
Xmon(P(™47)) < I
Hence by Proposition 2.1 we have
1
(2.7) — < sup | saz”|,
m ZGB[? |a|2m

i.e., for each fixed degree m the maximum modulus of a unimodular
m~homogeneous polynomial on Byp is uniformly bounded from below in
n.

More generally, we now prove a theorem which includes (2.4) and
(2.7) as particular cases. We will need the following lemma which is
related to [3, Theorem 3] and [13, Theorem 3.2].

LeEmMMA 2.2. Given r1,...,mn > 0, consider on C" the norm |z| :=
sup{|2| : k = 1,...,n} and denote the associated Banach space by
28 (r1,...,mn). Then

m—1
Xmon(lp(mego(Th cen :Tn))) <dnpn 7,

where the constant dy, > 0 is the one from (2.6).

Proof. Clearly the open unit ball of £2 (71, ..., ry) is the polydisc {z €
"ozl <rg, k=1,...,n}. Let Z|a|=m co?® be an m-homogeneous
polynomial on C" such that
| Z caz®| <1, for all 2 € Byn_(r,,...r0)-

la|l=m
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Then
| Z cal(rrzr)*| £ 1, for all z € By,
|a|=m
which implies
| Z car®2%| <1, for all z € By .
|a|]=m

Hence, we obtain by (2.6) that
| Z lcalr®z®] < dmn%, for all z € By,

|a)]=m

which finally gives as desired that
| Z lcal2®| < dman_l, for all z € Byn (r,....rn)-

laj=m

O

The following result is our main lower bound for maximum moduli
of unimodular m-homogeneous polynomials.

THEOREM 2.3. For each m there is a constant ¢, > 0 such that for
each unimodular m-homogeneous polynomial Z| al=m 5a2%, z € C" the
following estimates hold.

(1) For each Reinhardt domain R C C™
(sup.er Pper l2l)” < sup| Z 502°

m m—1
n 2z z€ER

|la|=m

(2) For each Banach space X := (C",|.||) for which the e}s form a
1-unconditional basis

n

(SupzeBx D=1 |Zk]) o
C < Sa2 |,
s A= AP DL

(3) If, additionally, Bx C Bgy we obtain

Cm SUp lekl < sup | ) sa2”

z€B X p—-1 z€Bx [a=m

Proof. Each Reinhardt domain R is, by definition, a union of open
polydiscs. Given u € R, we take 71,...,7, > Osuch that u € {z € C" :



Maximum moduli of unimodular polynomials 215

l2k| <7k, k=1,...,n} C R. By Proposition 2.1 and Lemma 2.2 there
is a constant ¢, > 0 for which

Zk 11“k|)

n"r
SUP;ecB,n Y )™
S Cm ( E1S8=7) (le'y;:nl) k=1 )
< sup | Z 82" < sup| Z sa2%|,
ZEB[QC(,.I ,,,, ™) Ia| z€ER |a|

and hence (1) is proved. Statement (2) follows from Proposition 2.1 and
the fact that by [9, Theorem 6.1] there exists a constant d, > 0 such
that

(2.8) Xmon(P(™X)) < dmd(X, €)™Y,

now it is enough to take ¢, := (mld,,)~!. The proof of (3) is a conse-
quence of the fact that by [26, Corollary 2] and [9, (5.2)]:

1
— sup zi| < d(X,€7) < sup 2k
ﬂzeBx,Zl' < d(x, ) GB)E' !
This completes the proof. O

Let us collect some concrete examples in order to illustrate our re-
sults.We start with estimates for mixed Minkowski spaces

) = {(xh)fey T2, -, Ty € CV)
I(@x)k=1llp.q = lewkll” )P,

EXAMPLE 2.4. Let 3 ,_,, 5a2%, z € C*(C") be a unimodular m-

homogeneous polynomial in uv variables (for some order of these vari-
ables). Then

~1 91 .
sup | Y saz% > C{ulTrotTd if 1<p,q<2,
ZEB(u((.)) ]O‘l m
11 mtl m .
lu Pv 2 T if 1<p<2<g<oo,

C > 0 some constant depending only on m, p and q.
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Let us remark that, by taking p = ¢ and v = 1 in this example, we ob-
tain lower estimates for every unimodular m-homogeneous polynomials
on £, 1 <p< oo

m+l_ m

n 2 » if 2<p<oo,
(2.9) sup | Z $a2%| > C
P lol=m R i 1<p<2.
The results of the next section will show in which sense these esti-

mates are optimal. Our proof of Example 2.4 needs the following

LEMMA 2.5. In the three cases 1 < p,q < 2 or 2 < p,q < o0 or
1<p<2<q< oo we have

d(£5(6g), 1) < d(6y, £7)d(£5, 7).
Proof. For 1 < p,q < 2 we know from [26, Corollary 2] that
_1 g1
d(a (), B8 < 1D ew @eillenny =u' o' "5 = d(&, 6)d(ly, 7);
k,l
see e.g. [28, 37.6]. If 2 < p,q < oo, then M2 (€u(£)) = 1, and hence it
follows from [28, Corollary 41.9] that as desired
d(ty(4), 61") < CVuw,

C > 0 some absolute constant. Finally, the remaining case: Note first
that for every linear bijection T': £; — £§

d(E3(€2), 6%) = d(€f @ £, 05 @ €3) < [[id @ T||lid T~ = (TINT I,
hence d(£}(£3),£1") < d(£y,£7); for 1 < p < 2 < g < oo now by factor-
ization
d(£,(£g), 617) < d(€5(4q), 61 (€g))d(£y (64), £1°)
< llid < £5(85) — E(€Q)[|d(€g, £7)
= w7 VPA(E, ) < d(€%, 6)d(2, 13).
O
For the remaining case 1 < ¢ < 2 < p < oo the estimate from Lemma
2.5 is false; by a result of Kwapien and Schiitt from [20, Corollary 3.3]

we, e.g., see that d(£( ’1‘)),6?2) % n (and not, as one could expect
from the estimate of the lemma, /n). We believe that at least in this
special case the optimal lower bound for sup,¢ Bz (sp) |Z|a|=m 502°%

comes from Theorem 2.3(1), namely n"e.
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Proof of the Fxample 2.4. All three cases are consequences of Theo-
rem 2.3. We know that

sup Z[ <zep®e > | =|lid: L) — 67 = ul TPyl
ZEBg;(elq)) kL
Hence the first case is a consequence of Theorem 2.3(1), the second one
of 2.3(3), and the last of 2.3(2) combined with the preceding lemma. [

The next example deals with Orlicz spaces £,, and is a considerable
extension of (2.9) (take p(t) = tP).

EXAMPLE 2.6. Let ¢ be an Orlicz function satisfying the As-condi-
tion. Then for each m there is a constant ¢, > 0 such that for each
unimodular m-homogeneous polynomial Z| al=m 842% in n variables, the
following estimates hold.

m+l
(1) cmn 2 H1/n)™ < SUPeB,, |Z|a|:m Sa2%|.
(2) emnp~(1/n) < SUDep,, lzla|=m 342%|, provided that #2< Ky(t)
for all £ and some K.

Proof. The proof is again a simple consequence of Theorem 2.3, the
observations (3.5) and (3.6) (anticipated from section 3), combined with
the well-known equality || >_,_, exlle, = Fl%ﬁn_) for the fundamental
function; the condition in (2) assures that £, C fo. O

‘We finish this section with an example for a non-convex domain.

ExaMPLE 2.7. Given S > 1 and n > 2 consider the Reinhardt domain
R:={(z1,...,20) €C™ : |21- 24| <1, |2| < S, k=1,...,n}. Then
for each m there exists a constant h,, > 0 such that for all unimodular
m-homogeneous polynomials Zlal=m $2% in n variables

hm ST 2 < sup | Z $a2%|.

2R ol=m
Proof. We have that
n
1
2.10 sup el = —1S + ——;
(210) w3l = (0= DS + g

indeed, if we take the compact set K := {z € [0,9]" : z1---z, <71}
for 0 < r < 1, then the maximum of the function f(z) := z; +--- +
z, on K is (n — 1)S + z=r, attained at (S,...,S, ga=r) and at any
point whose coordinates are a permutation of it. Let xzg € K such
that f(zo) = supgex f(z). As f has no critical points, zo belongs to
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0K, the boundary of K. On the other hand xg does not belong to
{z € (0,8)" : =z---z, = r}. In this case the Lagrange multiplier

method gives only the critical point (r1/?,...,r/?). But the function
g : (0,00) — R defined by g(z) := (n — 1)z + =7 attains a strict
absolute minimum at z = r!/* and

FEm, ey = et/ = gty
T T
If x € 8K and for some k we have z = 0, then f(z) < (n—-1)S <
F(S,..., S, ga=t) and T # zp. Finally, the only possibility left is that for
some k we have x = S. Then, by the symmetry of the function f, we
can assume xz, = S. By induction, we have

sup{(y,...,Zn_1) € [0, : 21y <SS} = (n—2)S+;—ij;—,
thus
flz1,...,2n-1,95)
< S+sup{(z1,...,a1) €0, ¢z zpy < 7S

T r

= (n-—l)S—Fﬁj :f(S""’S’ﬁjl)’

Now, since sup,cg » p—; 2] coincides with the maximum of f on

{z €[0,5]" : z1-- -z, < 1}, we obtain the equality (2.10). Hence, by
Theorem 2.3 (1) there exists a constant ¢, > 0 such that

((n=1)8 + 5=1)

m

m—1

1 m+1 TL—l m+1
cm—Smn’J?L_ < cm(———)mSmn 2 <cm

2m n noz
< sl Y sactl.
zER —
|a]=m
The conclusion follows by taking h,, = Cmg%;- |

3. Expectations of the modulus maximum of homogeneous
Bernoulli random polynomials on Reinhardt domains

The Kahane-Salem-Zygmund Theorem [18, Theorem 4, Chap. 6,
pp.70-71] shows that for the polydisc typically the maximum modulus

sup | Z 8a2%|

2€Bey. |4i=m
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of an arbitrarily given unimodular m-homogeneous polynomial is as
small as possible, namely n"s (see (2.4)). To obtain polynomials on
7 with “small” norms Boas in [1, Theorem 4] proves the existence of
symmetric complex m-linear forms on (£;)™ with “small” norms. His
proof, as explicitly stated, is made by a careful inspection of results due
to Mantero-Tonge (see [23, Theorem 1.1] and also [24, Proposition 4])
which in turn were inspired by the Kahane-Salem-Zygmund Theorem.
This section could be considered as an extension of the Mantero-Tonge
results. It is worth to mention that [23, Theorem 1.1] was used by
Dineen and Timoney in [13] and [14].

Let us clarify what we mean by “small” norm. Fix a degree m, a
family ¢, : @ — {-1,1}, |a| = m of independent Bernoulli random
variables on a probability space (2, u) (each €4 takes the values +1 and
—1 with equal probability 1/2), and ¢, € C. Then we call

Z Cota?®, € C™,
la|=m
an m-homogeneous Bernoulli random polynomial. According to [18,

Chapter 6, Theorem 3] there is an absolute constant C' > 0 such that

m+l 1/2 1
u(zesgi)n | Z £az®| > Cn 2 (logm)'/?) < e

|a|]=m

Hence with “high probability” the maximum modulus of every m-ho-

mogeneous Bernoulli polynomial szm $02% z € C™, can be esti-

mated from above by a constant times (logm)!/ 2an+l; in particular,

there exists a set of signs s,, || = m such that

sup | Z sq2% < C(logm)l/2n7+1
ZEngo |a|=m
To see from another point of view that (2.4) for fixed m is optimal in the
dimension 7, integrate (2.4) in order to obtain the following lower esti-
mate for the expectation of the modulus maximum of an m-homogeneous
Bernoulli random polynomial with respect to the polydisc Byn :

cmnﬂ‘j—1 g/ sup | Z Eq2%|dp;
Q

ZeB[go |a|=m

by [9, Corollary 6.5] we know that this result is optimal. More generally,
given a Reinhardt domain R in C" satisfying one of the assumptions of
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Theorem 2.3, integration gives a lower bound for the averages

/qup| Z €a2|du,

zER
lal=m

and a modification of [9, Theorem 3.1] will show that for rich classes of
domains R the lower bounds obtained in this way, are optimal.

Recall that a real valued random variable X on a probability space
(Q, u) is said to be Gaussian whenever it has mean zero, is square inte-
grable and its Fourier transform satisfies

—nxnétg

Ee®X =e—7 ', where t € R and [X|l2 = (]EXZ)%;

X is a standard Gaussian random variable if it is measurable and if for
every Borel subset B of R we have

1 2
we glw)e B =—/e“7dt.
o g9(w) € B} oz /s
The following result is our main technical tool.

THEOREM 3.1. Let U be a bounded circled set in C", and (ga)|aj=m
and (gr)1<k<n two families of independent standard Gaussian random
variables on a probability space (2, u). Then for each choice of scalars
Ca, la] =m

/ sup| > Cagaz®|du

zelU
lor|=m

a' o m=—1 n
< Cy, sup {Icah/——'}sup(g |z1]?) "2 /supl E k2K |du,
|a|:m m! zelU =1 zelU k=1

3
where 0 < C,, < 2™ 2m,3,

Since the proof is a simple modification of [9, Theorem 3.1] we only
sketch some relevant details. In fact, we prove a reformulation which
needs some more notation. For natural numbers m, n we define M(m, n)
={1,...,n}™ and J(m,n) :={j = (J1,.--,dm) € {1,...,n}™ : 51 <
-+ < jm}. Moreover, for j € J(m,n) let |j| be the cardinality of the
set of all i € M(m,n) for which there is a permutation 7 of {1,...,n}
such that i,(xy = jx for 1 < k < m. Finally, if e; denotes the kth
coefficient functional on C" and j € J(m,n), then we write ef(2) :=
e (2)---€; (2), 2 € C". Now observe that if o € (NU {0})" is a multi
«

index such that |a = m, then 2% = 21" --- 23" = €j(2) for all z € C",
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. a1 —times o —times . . . .
where j = (1,...... 1,0, ,n), and that in this case |j| = 2.

Hence, the following inequality is a reformulation of Theorem 3.1:

Jswl 3 ges@lan

zeU jeT (m,n)

n
<Cy sup I—JI— sup Z|zk| /suplzgkzkld,u.
U zeU

JET (m,n) L]l z€

(3.1)

The crucial ingredient of the proof of Theorem 3.1 is Slepian’s lemma.
Given N real-valued random variables X : Q — R,

(X1,...,Xn): Q> RY

is said to be a Gaussian random vector provided that each real linear
combination YN, X, is Gaussian. For example, if each X itself
is a real linear combination of standard Gaussians, then they form a
Gaussian random vector. The following comparison theorem originates
in the work of Slepian [25] (see Fernique [15], and also [17, Remark
1.5] and [21, Corollary 3.14]): let (Xi,...,Xn) and (Y1,...,Yn) be
Gaussian random vectors such that E|Y; — Y;|2 < E|X; — X;|? for each
pair (Z,7). Then

(3.2) EmaxY; < Emax X;.

Proof of inequality (3.1). Without loss of generality we may assume
that all coefficients c; are real, and |¢5| < 4/|j| for all j € J(m,n). The
aim is to estimate instead of the average

[sul 3 angide,
€U seg(mon)
for each finite set D C U, the average
(3.3) /sup Z cjgiRe €] (z)dp.
zeD
je€T (m,n)

Indeed, if P is an m-homogeneous polynomial on C", then it is very
easy to prove, by the fact that U is circled and P is homogeneous, that
|P|| = sup,cy Re P(z). Since, by hypothesis, ¢; € R and g; : @ — R
for all j € J(m,n), for each w € 0

sup | Z cjgi(w)ej (2)| = sup Z cjgj(w)Reej(2).

zeU jeT(mn) ZEUje.](m,n)
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Moreover, by a compactness argument for each £ > 0 there is a finite
subset D C U such that

/sup Z cjgj(w)Re e (z)dp

zEUJej (m,n)

/sup Z cjg5(w)Re e (2)dp + ¢.

ZGDJEJ (m,n)

If now {al}lz:l_1 is an ordering of {& : o = ()i, € {0,1}™ such that
— |a| is even}, then for every j € J(m,n) and z € C*,

gm— 1

l’
Reej( Z sla ). -a ™ (2),

where ai}u(z) := Re eZ(z)O‘{AIm eZ(z)l_aff and g := (—1)(m=leD/2 1 <
I<92m 1 1<wu<mand1l<k<n. Define the following two Gaussian
random processes:

Y, = Z cjgi(w)Re e (z)

jeJ(m,n)
9m— 1
= Z Cig; Z sla - ;T(z), z e C",
J€J(m,n)
m=1
X, = Z Zzglukak (z), z € C",
=1 u=1k=1

where the gj, g1k and g all stand for independent standard Gaussian
random variables. Note that for fixed / and u, the term >, _, gl,u,kaé’u(z)
coincides either with > ;'_; giusReej(2) or with >3 ; g, xIm e} (2) for
all z € C". Fix now a finite set D C U, and show exactly as in the proof
of [9, Theorem 3.1] that for each pair z,y in D

( / v, — Yy|2du)1/2

2m

/ X, — X, [2d) 2.
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By Slepian’s lemma. (3.2) we finally obtain

/sup > cigRee;(2)du

zeD

JET (m,n)
2m=1 m n
S l\rsup(z;zk; S ET DI IO
z =1 u=1k=1
< vam- \/_SHP Z|Zk| ) ZZ/SUplZglukzkldu
=1 u=1

m—1
= Vor-Ly/momim sug(ZIsz)T/sup|ngzk[du.
2V k=1 k=1

z€
Together with the consideration from (3.3) this completes the proof. [

Estimating Bernoulli by Gaussian averages, we add an explicit esti-
mate of the expectation of the maximum modulus of an m-homogeneous
Bernoulli random polynomial.

COROLLARY 3.2. Let (€a)|a|=m and (€x)1<k<n be a families of in-
dependent standard Bernoulli random variables on a probability space
(Q, 1), and let cq, |a| = m be scalars.

(1) For each bounded circled set U in C* we have

/sup| Z ca€az™|dp

zelU
loe|=

a! = m=1 -
< VIogn Gy sup {|ca|\/—,}sup<2|zk12> P sup>
la)=m m- ) zeU k=1 zeU .

(2) Let X = (C",||.||) be a Banach space for which the ey’s form an
l-unconditional basis, and let 2 < q < 0. Then we have

/ sup | Y caga?®|dp

BN Jaj=m

< VAG(X") O s {lcaly/ 2} sup 3 ) sup Sl

Bx k 1 Bx =1
Here ¢ > 0 is an absolute constant and C,,, as above.

Proof. We use the following facts:
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(i) Gauss averages in a Banach space always dominate Bernoulli av-
erages (see e.g. [28, (4.2), p.15]),
(ii) given a Banach space Y and y3,...,yn € Y, then

n n
JIX gwsnlivan < viogn [ 1Y exuelve
k=1 k=1

(see e.g. [28, (4.4) p.15]),
(iii) there is a constant ¢ > 0 such that, given a Banach space Y of
cotype ¢, for each choice of y1,...,y, € Y, we have

n n
/ IS gkallydi < ey/aCy(Y) / IS eruelly
k=1 k=1

(see e.g. [28, (4.3) p.15]), where (gi), respectively (ex), is a family of in-
dependent standard Gaussian, respectively Bernoulli, random variables
on a probability space. Now from (i), (ii) and Theorem 3.1 we obtain

/Supl Z Ca5a2a|dﬂ

zeU la|=m

al - m—1 -
< VlognCr, sup {lcal\/—,}sup(ZIzkIQ) z / sup| > erzildu.
|a|=m m) aeU 1T €U 1
But
n n n
(3.4) /sup| epzg|dp < /sup |zkldp = sup » |2k,
zelU Z ZEU]; zEUkz:;

k=1
which proves (3.2). (3.2) follows from (i), (iii), Theorem 3.1 and (3.4).
O
Given m € N, if (ap(m))s2; and (b,(m))S2, are scalar sequences we

write a,(m) = by(m) whenever there are some ¢m,dy > 0 such that
cman(m) < bp(m) < dpan(m) for all n. Again we illustrate our results
by several examples. The first example is the counterpart of Example
2.4.

ExaAMPLE 3.3.

1 1
/ sup | Z caz®ldu 2 { ulrpt e if 1<p,qg<2,

ZEBe%(Zg) |ae|=m
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For v =1 and p = ¢ this result was proved in [9, Corollary 6.5]. If we
allow p and ¢ to equal 1, then in the second two cases the proof will show
that we have to admit an additional log term. For 1 < ¢ <2 <p < o0
the upper estimate also holds, for the lower we don’t know (see the
remark after Lemma 2.5).

Proof of Example 3.3. The lower bound is immediate from Theorem
2.3. Upper bound: Since £, () in all considered cases has finite cotype,
by Corollary 3.2(2) and (3.5), we get

/ sup IZ €a2®|du
zeB(;“E) |a|l=m

< Dpllid : £3(€5) — 63| ;ez 2 €} lles, )

< Dppllid : £ — €5|™ Hjid : €7 — £5]™ TPy,
which by Hélder’s inequality is the desired result. O
We go on with the counterpart of Example 2.7.
EXAMPLE 3.4. Given S > 1 and n > 2 consider the Reinhardt domain

R:={(z1,...,2) €C™ 1 |z1---2,) <1, |2x| < S, k=1,...,n}. Then
the following asymptotic estimate holds:

/supl Z Eazald,ugnm;l.

zER laj=m

Proof. The lower bound is a consequence of Example 2.7. The upper
estimate follows from

/Sup| Z €a2a|d#S/ sup | Z ea2®|du,

ZER o =m {z:]z]<S, k=1,...,n} la|=m
and Example 3.3 for the case £ . O

Let us give some more abstract estimates for finite sections X,, of
Banach sequence spaces X.

COROLLARY 3.5. Let X be a Banach sequence space with non-trivial
convexity, and X,, :=span{e;: 1 <k <n},n€eN.
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(1) For each m there is a constant D,, > 0 such that for every n

1 (SupzeBXn Sher l2k)™

Dy, n5
n L n
S/ sup | Z ea2®idp < Dy, sup (lek|2)T sup lek|.
ZEBXn |a|:m ZEBX” k=1 ZEBXn k=1

(2) If X is symmetric and 2-convex, then

n m
SUp,cp. |z
[ s | et P Bl

m—1

2€Bx,, la=m n 2

(3) If X C (s, then

n
/ sup | Z 5,1z°‘[du§ sgp lekl

ZEBX" |a|:m z€ Xn k=1

This result is an improvement of [9, Corollary 6.5].

Proof. The lower bound in (1) is a consequence of Theorem 2.3 (1).
Since X* has non-trivial concavity, which implies that it has cotype ¢ for
some 2 < ¢ < oo , the upper bound in (1) is a consequence of Corollary
3.2 (2). In (2) it remains to show the upper bound: We may assume
that M(?)(X) = 1, hence

n

n
sup 1 2
sup (Z|2k|2)1/2: z€Bx,, Zk 1‘ ‘
ZEBx" k=1 \/-'I'_L

(see [27, Proposition 2.2] and [11, Proposition 3.5]). Hence, the con-
clusion in (2) is a consequence of the upper bound in (1). Finally, the
upper bound in (3) follows from the upper bound in (1), and the lower
bound in (3) by Theorem 2.3 (3). O

In the symmetric case the above three statements can be reformulated
in terms of the fundamental function || > 7_; exllx,., n € N of X:

REMARK 3.6. Let X be a symmetric Banach sequence space with
non-trivial convexity, and X, :=span{er : 1 <k <n},ne€N.
(1") For each m there is a constant D,, such that for every n

m+1

1 n*
Dy || 22k=1 €xl1%,

< / sup | €02%dp < Dpllid : X;, — 0| —e————.
zeBXn |a|§m 2 ” ZZ:I ek‘“Xn

n
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(2°) If X is 2-convex, then

+1

m n 2
sup E Eq2¥dy X =
/ | +<l 2 k=1 exll%,

ZEBXn |a|=m
(3’) f X C £, then
n
/ sup | Z 5aza|du2—————” ST elln
=1 n

ZEan |a|=m

Proof. The proof easily follows from the following observations:
n

sup (O |zx|%)/2 = |lid : X — 23]

2€Bx,

(3.5) n n
sup D |zl =11 D ekllx; = llid: X — €],

2€Bx5 =t k=1

and the well known fact that for symmetric X for all n
n 7
(3.6) n=1>_elx:Derlx,
k=1 k=1

(see [22, Proposition 3.a.6, p.118, vol. I}). O

In our Corollaries 3.2 and 3.5 and Examples 3.3 and 3.4 we have
proved upper bounds for the average of the maximum moduli of m-
homogenous Bernoulli random polynomials. This shows the existence
of m-homogeneous Bernoulli polynomials which have norms being less
or equal to the bounds given in these results. Moreover, in section 2
for some cases (see e.g. the Examples 2.4, 2.6 and 2.7) we have given
lower bounds for m-homogeneous Bernoulli polynomials which coincide
(up to a constant) with the upper bounds obtained for the expectations
in 3.3 and 3.4. Hence, we have proved the existence of m-homogeneous
Bernoulli polynomials which have norms as small as possible (up to a
constant). Again we illustrate this by an example.

EXAMPLE 3.7. Let ¢ be an Orlicz function satisfying the As-condit-
ion. Then for each m there is a constant D,, > 0 such that for every n

there are signs sq, |a| = m for which
41

(1) SUP,ep, | 22 af=m Saz®] < Dimn™2 o~ 1(1/n)™, provided p(At) <
KMX2p(t) for all 0 < A\t <1 and some K > 1,

(2) SUpep, [ 2 jaj=m Saz¥|< D,,np~1(1/n), provided that t%< Ky(t)
for all £ and some K.



228 Andreas Defant, Domingo Garcia and Manuel Maestre

By Example 2.6 we know that the estimates in the statements (1)
and (2) are the “smallest” possible.

As above this result easily follows from the fact that || >"p_; exlle, =

—-1—1/—75; the conditions in (1) and (2) make sure that ¢, is 2-convex and

e !(
contained in £3, respectively (see [19]).
Similar results can be obtained for various other types of Banach

sequence spaces, e.g. Lorentz spaces.
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