• Title/Summary/Keyword: holonomy

Search Result 26, Processing Time 0.019 seconds

NORMAL HOLONOMY GROUP OF A RIEMANNIAN FOLIATIO $N^*$

  • Pak, Hong-Kyung;Pak, Jin-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.17-23
    • /
    • 1993
  • In this paper, we will discuss on the above problem for the case that .upsilon. is a Riemannian foliation. If .upsilon. is a Riemannian foliation on (M, g), we derive some basic relations between the curvature $R^{D}$ of the normal connection D and the curvature R of the Levi-Civita connection .del. on (M, g) (see Lemma 1).).

  • PDF

INFRA-SOLVMANIFOLDS OF Sol14

  • LEE, KYUNG BAI;THUONG, SCOTT
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1209-1251
    • /
    • 2015
  • The purpose of this paper is to classify all compact manifolds modeled on the 4-dimensional solvable Lie group $Sol_1^4$, and more generally, the crystallographic groups of $Sol_1^4$. The maximal compact subgroup of Isom($Sol_1^4$) is $D_4={\mathbb{Z}}_4{\rtimes}{\mathbb{Z}}_2$. We shall exhibit an infra-solvmanifold of $Sol_1^4$ whose holonomy is $D_4$. This implies that all possible holonomy groups do occur; the trivial group, ${\mathbb{Z}}_2$ (5 families), ${\mathbb{Z}}_4$, ${\mathbb{Z}}_2{\times}{\mathbb{Z}}_2$ (5 families), and ${\mathbb{Z}}_4{\rtimes}{\mathbb{Z}}_2$ (2 families).

INVARIANT MEASURE AND THE EULER CHARACTERISTIC OF PROJECTIVELY ELAT MANIFOLDS

  • Jo, Kyeong-Hee;Kim, Hyuk
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.109-128
    • /
    • 2003
  • In this paper, we show that the Euler characteristic of an even dimensional closed projectively flat manifold is equal to the total measure which is induced from a probability Borel measure on RP$^{n}$ invariant under the holonomy action, and then discuss its consequences and applications. As an application, we show that the Chen's conjecture is true for a closed affinely flat manifold whose holonomy group action permits an invariant probability Borel measure on RP$^{n}$ ; that is, such a closed affinly flat manifold has a vanishing Euler characteristic.

RIEMANNIAN SUBMERSIONS OF SO0(2, 1)

  • Byun, Taechang
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1407-1419
    • /
    • 2021
  • The Iwasawa decomposition NAK of the Lie group G = SO0(2, 1) with a left invariant metric produces Riemannian submersions G → N\G, G → A\G, G → K\G, and G → NA\G. For each of these, we calculate the curvature of the base space and the lifting of a simple closed curve to the total space G. Especially in the first case, the base space has a constant curvature 0; the holonomy displacement along a (null-homotopic) simple closed curve in the base space is determined only by the Euclidean area of the region surrounded by the curve.

MATRIX PRESENTATIONS OF THE TEICHMULLER SPACE OF A PUNCTURED TORUS

  • Kim, Hong-Chan
    • The Pure and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.73-88
    • /
    • 2004
  • A punctured torus $\Sigma(1,1)$ is a building block of oriented surfaces. The goal of this paper is to formulate the matrix presentations of elements of the Teichmuller space of a punctured torus. Let $\cal{C}$ be a matrix presentation of the boundary component of $\Sigma(1,1)$.In the level of the matrix group $\mathbb{SL}$($\mathbb2,R$) we shall show that the trace of $\cal{C}$ is always negative.

  • PDF

DENSITY OF THE HOMOTOPY MINIMAL PERIODS OF MAPS ON INFRA-SOLVMANIFOLDS OF TYPE (R)

  • Lee, Jong Bum;Zhao, Xuezhi
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.293-311
    • /
    • 2018
  • We study the homotopical minimal periods for maps on infra-solvmanifolds of type (R) using the density of the homotopical minimal period set in the natural numbers. This extends the result of [10] from flat manifolds to infra-solvmanifolds of type (R). We give some examples of maps on infra-solvmanifolds of dimension three for which the corresponding density is positive.