MATRIX PRESENTATIONS OF THE TEICHMULLER SPACE OF A PUNCTURED TORUS

  • Published : 2004.02.01

Abstract

A punctured torus $\Sigma(1,1)$ is a building block of oriented surfaces. The goal of this paper is to formulate the matrix presentations of elements of the Teichmuller space of a punctured torus. Let $\cal{C}$ be a matrix presentation of the boundary component of $\Sigma(1,1)$.In the level of the matrix group $\mathbb{SL}$($\mathbb2,R$) we shall show that the trace of $\cal{C}$ is always negative.

Keywords