References
- L. Alseda, S. Baldwin, J. Llibre, R. Swanson, and W. Szlenk, Minimal sets of periods for torus maps via Nielsen numbers, Pacific J. Math. 169 (1995), no. 1, 1-32. https://doi.org/10.2140/pjm.1995.169.1
- L. Block, J. Guckenheimer, M. Misiurewicz, and L. S. Young, Periodic points and topological entropy of one-dimensional maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), pp. 18-34, Lecture Notes in Math., 819, Springer, Berlin, 1980.
- D. Choi and J. Shin, Free actions of finite Abelian groups on 3-dimensional nilmanifolds, J. Korean Math. Soc. 42 (2005), no. 4, 795-826. https://doi.org/10.4134/JKMS.2005.42.4.795
- K. Dekimpe, Almost-Bieberbach Groups: Affine and Polynomial Structures, Lecture Notes in Mathematics, 1639, Springer-Verlag, Berlin, 1996.
- K. Dekimpe, P. Igodt, S. Kim, and K. B. Lee, Affine structures for closed 3-dimensional manifolds with Nil-geometry, Quart. J. Math Oxford. (2) 46 (1995), no. 182, 141-167. https://doi.org/10.1093/qmath/46.2.141
- A. Fel'shtyn and J. B. Lee, The Nielsen and Reidemeister numbers of maps on infrasolvmanifolds of type (R), Topology Appl. 181 (2015), 62-103. https://doi.org/10.1016/j.topol.2014.12.003
- A. Fel'shtyn and J. B. Lee, The Nielsen numbers of iterations of maps on infra-solvmanifolds of type (R) and periodic points, arXiv:1403.7631.
- K. Y. Ha and J. B. Lee, Crystallographic groups of Sol, Math. Nachr. 286 (2013), no. 16, 1614-1667. https://doi.org/10.1002/mana.201200304
- K. Y. Ha and J. B. Lee, Averaging formula for Nielsen numbers of maps on infra-solvmanifolds of type (R)-Corrigendum, Nagoya Math. J. 221 (2016), no. 1, 207-212. https://doi.org/10.1017/nmj.2016.6
- J. W. Hoffman, Z. Liang, Y. Sakai, and X. Zhao, Homotopy minimal period self-maps on flat manifolds, Adv. Math. 248 (2013), 324-334. https://doi.org/10.1016/j.aim.2013.08.009
- J. Jezierski, Wecken theorem for fixed and periodic points, Handbook of Topological Fixed Point Theory, 555-615, Springer, Dordrecht, 2005.
- J. Jezierski, J. Kedra, and W. Marzantowicz, Homotopy minimal periods for NRsolvmanifolds maps, Topology Appl. 144 (2004), no. 1-3, 29-49. https://doi.org/10.1016/j.topol.2004.02.018
- J. Jezierski, E. Keppelmann, and W. Marzantowicz, Wecken property for periodic points on the Klein bottle, Topol. Methods Nonlinear Anal. 33 (2009), no. 1, 51-64. https://doi.org/10.12775/TMNA.2009.005
- J. Jezierski and W. Marzantowicz, Homotopy minimal periods for nilmanifold maps, Math. Z. 239 (2002), no. 2, 381-414. https://doi.org/10.1007/s002090100303
- J. Jezierski and W. Marzantowicz, Homotopy minimal periods for maps of three-dimensional nilmanifolds, Pacific J. Math. 209 (2003), no. 1, 85-101. https://doi.org/10.2140/pjm.2003.209.85
- J. Jezierski and W. Marzantowicz, Homotopy methods in topological fixed and periodic points theory, Topological Fixed Point Theory and Its Applications, 3, Springer, Dordrecht, 2006.
- B. Jiang, Lectures on Nielsen fixed point theory, Contemporary Math., 14, Amer. Math. Soc., Providence, R.I., 1983.
- B. Jiang and J. Llibre, Minimal sets of periods for torus maps, Discrete Contin. Dynam. Systems 4 (1998), no. 2, 301-320. https://doi.org/10.3934/dcds.1998.4.301
- J. H. Jo and J. B. Lee, Nielsen type numbers and homotopy minimal periods for maps on solvmanifolds with Sol4 1-geometry, Fixed Point Theory Appl. 2015 (2015), 175, 1-15. https://doi.org/10.1186/1687-1812-2015-1
- J. H. Jo and J. B. Lee, Nielsen fixed point theory on infra-solvmanifolds of Sol, Topol. Methods Non-linear Anal. 49 (2017), 325-350.
- J. Y. Kim, S. S. Kim, and X. Zhao, Minimal sets of periods for maps on the Klein bottle, J. Korean Math. Soc. 45 (2008), no. 3, 883-902. https://doi.org/10.4134/JKMS.2008.45.3.883
- S. W. Kim and J. B. Lee, Anosov theorem for coincidences on nilmanifolds, Fund. Math. 185 (2005), no. 3, 247-259. https://doi.org/10.4064/fm185-3-3
- J. B. Lee, Homotopy minimal periods of maps on the Klein bottle, submitted for publication.
- J. B. Lee and K. B. Lee, Lefschetz numbers for continuous maps, and periods for expanding maps on infra-nilmanifolds, J. Geom. Phys. 56 (2006), no. 10, 2011-2023. https://doi.org/10.1016/j.geomphys.2005.11.003
- J. B. Lee and K. B. Lee, Averaging formula for Nielsen numbers of maps on infra-solvmanifolds of type (R), Nagoya Math. J. 196 (2009), 117-134. https://doi.org/10.1017/S0027763000009818
- J. B. Lee and X. Zhao, Homotopy minimal periods for expanding maps on infranilmanifolds, J. Math. Soc. Japan 59 (2007), no. 1, 179-184. https://doi.org/10.2969/jmsj/1180135506
- J. B. Lee and X. Zhao, Nielsen type numbers and homotopy minimal periods for maps on the 3-nilmanifolds, Sci. China Ser. A 51 (2008), no. 3, 351-360. https://doi.org/10.1007/s11425-008-0003-5
- J. B. Lee and X. Zhao, Nielsen type numbers and homotopy minimal periods for maps on 3-solv-manifolds, Algebr. Geom. Topol. 8 (2008), no. 1, 563-580. https://doi.org/10.2140/agt.2008.8.563
- Z. Liang and X. Zhao, Self-maps on flat manifolds with infinitely many periods, Discrete Contin. Dyn. Syst. 32 (2012), no. 6, 2223-2232. https://doi.org/10.3934/dcds.2012.32.2223
- J. Llibre, A note on the set of periods for Klein bottle maps, Pacific J. Math. 157 (1993), no. 1, 87-93. https://doi.org/10.2140/pjm.1993.157.87
- D. S. Passman, The Algebraic Structure of Group Rings, Pure and Appl. Math., Wiley, New York, 1977.
- O. M. Sarkovs'kii, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Z. 16 (1964), 61-71.
- R. Tauraso, Sets of periods for expanding maps on flat manifolds, Monatsh. Math. 128 (1999), no. 2, 151-157. https://doi.org/10.1007/s006050050052
- B. Wilking, Rigidity of group actions on solvable Lie groups, Math. Ann. 317 (2000), no. 2, 195-237. https://doi.org/10.1007/s002089900091
- J. Wolf, Spaces of Constant Curvature, 5th ed., Publish or Perish, Wilmington, 1984.