DOI QR코드

DOI QR Code

DENSITY OF THE HOMOTOPY MINIMAL PERIODS OF MAPS ON INFRA-SOLVMANIFOLDS OF TYPE (R)

  • Lee, Jong Bum (Department of Mathematics Sogang University) ;
  • Zhao, Xuezhi (Department of Mathematics Institute of Mathematics and Interdisciplinary Science Capital Normal University)
  • Received : 2017.03.17
  • Accepted : 2017.06.01
  • Published : 2018.03.01

Abstract

We study the homotopical minimal periods for maps on infra-solvmanifolds of type (R) using the density of the homotopical minimal period set in the natural numbers. This extends the result of [10] from flat manifolds to infra-solvmanifolds of type (R). We give some examples of maps on infra-solvmanifolds of dimension three for which the corresponding density is positive.

Keywords

References

  1. L. Alseda, S. Baldwin, J. Llibre, R. Swanson, and W. Szlenk, Minimal sets of periods for torus maps via Nielsen numbers, Pacific J. Math. 169 (1995), no. 1, 1-32. https://doi.org/10.2140/pjm.1995.169.1
  2. L. Block, J. Guckenheimer, M. Misiurewicz, and L. S. Young, Periodic points and topological entropy of one-dimensional maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), pp. 18-34, Lecture Notes in Math., 819, Springer, Berlin, 1980.
  3. D. Choi and J. Shin, Free actions of finite Abelian groups on 3-dimensional nilmanifolds, J. Korean Math. Soc. 42 (2005), no. 4, 795-826. https://doi.org/10.4134/JKMS.2005.42.4.795
  4. K. Dekimpe, Almost-Bieberbach Groups: Affine and Polynomial Structures, Lecture Notes in Mathematics, 1639, Springer-Verlag, Berlin, 1996.
  5. K. Dekimpe, P. Igodt, S. Kim, and K. B. Lee, Affine structures for closed 3-dimensional manifolds with Nil-geometry, Quart. J. Math Oxford. (2) 46 (1995), no. 182, 141-167. https://doi.org/10.1093/qmath/46.2.141
  6. A. Fel'shtyn and J. B. Lee, The Nielsen and Reidemeister numbers of maps on infrasolvmanifolds of type (R), Topology Appl. 181 (2015), 62-103. https://doi.org/10.1016/j.topol.2014.12.003
  7. A. Fel'shtyn and J. B. Lee, The Nielsen numbers of iterations of maps on infra-solvmanifolds of type (R) and periodic points, arXiv:1403.7631.
  8. K. Y. Ha and J. B. Lee, Crystallographic groups of Sol, Math. Nachr. 286 (2013), no. 16, 1614-1667. https://doi.org/10.1002/mana.201200304
  9. K. Y. Ha and J. B. Lee, Averaging formula for Nielsen numbers of maps on infra-solvmanifolds of type (R)-Corrigendum, Nagoya Math. J. 221 (2016), no. 1, 207-212. https://doi.org/10.1017/nmj.2016.6
  10. J. W. Hoffman, Z. Liang, Y. Sakai, and X. Zhao, Homotopy minimal period self-maps on flat manifolds, Adv. Math. 248 (2013), 324-334. https://doi.org/10.1016/j.aim.2013.08.009
  11. J. Jezierski, Wecken theorem for fixed and periodic points, Handbook of Topological Fixed Point Theory, 555-615, Springer, Dordrecht, 2005.
  12. J. Jezierski, J. Kedra, and W. Marzantowicz, Homotopy minimal periods for NRsolvmanifolds maps, Topology Appl. 144 (2004), no. 1-3, 29-49. https://doi.org/10.1016/j.topol.2004.02.018
  13. J. Jezierski, E. Keppelmann, and W. Marzantowicz, Wecken property for periodic points on the Klein bottle, Topol. Methods Nonlinear Anal. 33 (2009), no. 1, 51-64. https://doi.org/10.12775/TMNA.2009.005
  14. J. Jezierski and W. Marzantowicz, Homotopy minimal periods for nilmanifold maps, Math. Z. 239 (2002), no. 2, 381-414. https://doi.org/10.1007/s002090100303
  15. J. Jezierski and W. Marzantowicz, Homotopy minimal periods for maps of three-dimensional nilmanifolds, Pacific J. Math. 209 (2003), no. 1, 85-101. https://doi.org/10.2140/pjm.2003.209.85
  16. J. Jezierski and W. Marzantowicz, Homotopy methods in topological fixed and periodic points theory, Topological Fixed Point Theory and Its Applications, 3, Springer, Dordrecht, 2006.
  17. B. Jiang, Lectures on Nielsen fixed point theory, Contemporary Math., 14, Amer. Math. Soc., Providence, R.I., 1983.
  18. B. Jiang and J. Llibre, Minimal sets of periods for torus maps, Discrete Contin. Dynam. Systems 4 (1998), no. 2, 301-320. https://doi.org/10.3934/dcds.1998.4.301
  19. J. H. Jo and J. B. Lee, Nielsen type numbers and homotopy minimal periods for maps on solvmanifolds with Sol4 1-geometry, Fixed Point Theory Appl. 2015 (2015), 175, 1-15. https://doi.org/10.1186/1687-1812-2015-1
  20. J. H. Jo and J. B. Lee, Nielsen fixed point theory on infra-solvmanifolds of Sol, Topol. Methods Non-linear Anal. 49 (2017), 325-350.
  21. J. Y. Kim, S. S. Kim, and X. Zhao, Minimal sets of periods for maps on the Klein bottle, J. Korean Math. Soc. 45 (2008), no. 3, 883-902. https://doi.org/10.4134/JKMS.2008.45.3.883
  22. S. W. Kim and J. B. Lee, Anosov theorem for coincidences on nilmanifolds, Fund. Math. 185 (2005), no. 3, 247-259. https://doi.org/10.4064/fm185-3-3
  23. J. B. Lee, Homotopy minimal periods of maps on the Klein bottle, submitted for publication.
  24. J. B. Lee and K. B. Lee, Lefschetz numbers for continuous maps, and periods for expanding maps on infra-nilmanifolds, J. Geom. Phys. 56 (2006), no. 10, 2011-2023. https://doi.org/10.1016/j.geomphys.2005.11.003
  25. J. B. Lee and K. B. Lee, Averaging formula for Nielsen numbers of maps on infra-solvmanifolds of type (R), Nagoya Math. J. 196 (2009), 117-134. https://doi.org/10.1017/S0027763000009818
  26. J. B. Lee and X. Zhao, Homotopy minimal periods for expanding maps on infranilmanifolds, J. Math. Soc. Japan 59 (2007), no. 1, 179-184. https://doi.org/10.2969/jmsj/1180135506
  27. J. B. Lee and X. Zhao, Nielsen type numbers and homotopy minimal periods for maps on the 3-nilmanifolds, Sci. China Ser. A 51 (2008), no. 3, 351-360. https://doi.org/10.1007/s11425-008-0003-5
  28. J. B. Lee and X. Zhao, Nielsen type numbers and homotopy minimal periods for maps on 3-solv-manifolds, Algebr. Geom. Topol. 8 (2008), no. 1, 563-580. https://doi.org/10.2140/agt.2008.8.563
  29. Z. Liang and X. Zhao, Self-maps on flat manifolds with infinitely many periods, Discrete Contin. Dyn. Syst. 32 (2012), no. 6, 2223-2232. https://doi.org/10.3934/dcds.2012.32.2223
  30. J. Llibre, A note on the set of periods for Klein bottle maps, Pacific J. Math. 157 (1993), no. 1, 87-93. https://doi.org/10.2140/pjm.1993.157.87
  31. D. S. Passman, The Algebraic Structure of Group Rings, Pure and Appl. Math., Wiley, New York, 1977.
  32. O. M. Sarkovs'kii, Co-existence of cycles of a continuous mapping of the line into itself, Ukrain. Mat. Z. 16 (1964), 61-71.
  33. R. Tauraso, Sets of periods for expanding maps on flat manifolds, Monatsh. Math. 128 (1999), no. 2, 151-157. https://doi.org/10.1007/s006050050052
  34. B. Wilking, Rigidity of group actions on solvable Lie groups, Math. Ann. 317 (2000), no. 2, 195-237. https://doi.org/10.1007/s002089900091
  35. J. Wolf, Spaces of Constant Curvature, 5th ed., Publish or Perish, Wilmington, 1984.