References
- Linear Operators N. Dunford;J. T. Schwartz
- Comment. Math. Helv. v.55 Closed similarity manifolds D. Fried https://doi.org/10.1007/BF02566707
- Comm. Math. Helv. v.56 Affine manifolds with nilpotent holonomy D. Fried;W. Goldman;M. Hirsch https://doi.org/10.1007/BF02566225
- Contemp. Math. v.74 Geometric structures on manifolds and varieties of representations W. M. Goldman https://doi.org/10.1090/conm/074/957518
- Van Nostrand Math. Studies #16 Invariant means on topological groups and their applications F. P. Greenleaf
- Ann. of Math. v.10 Foliated bundles, invariant measures and flat manifolds M. W. Hirsch;W. P. Thurston
- Lecture notes in Math. v.1000 Differential Geometry in the Large H. Hopf
- Topology Appl. v.40 The Euler characteristic of a certain class of projectively flat manifolds H. Kim;H. Lee https://doi.org/10.1016/0166-8641(91)90051-M
- Proc. Amer. Math. Soc. v.118 The Euler characteristic of projectively flat manifolds with amenable fundamental groups H. Kim;H. Lee https://doi.org/10.2307/2160043
- Proceedings of the international conference on pure and applied Math., Beijing and Yanji A Polyhedral Gauss-Bonnet formula and projectively flat manifolds H. Kim
- Ist. Naz. Alta. Mat. Symp. Math. v.26 Invariant distances for projective structures S. Kobayashi
- Bull. Amer. Math. Soc. v.81 The Euler characteristic of a compact affine space form is zero B. Kostant;D. Sullivan https://doi.org/10.1090/S0002-9904-1975-13896-1
- Adv. Math. v.25 On fundamental groups of complete affinely flat manifolds J. Milnor https://doi.org/10.1016/0001-8708(77)90004-4
- Osaka J. Math. v.11 The affine structures on the real two-torus T. Nagano;K. Yagi
- The geometry and topology of 3-manifolds W. P. Thurston
- Monographs in Mathematics. v.81 Ergodic theory and semisimple groups R. J. Zimmer
Cited by
- The analytic continuation of hyperbolic space vol.161, pp.1, 2012, https://doi.org/10.1007/s10711-012-9698-0