• Title/Summary/Keyword: high power amplifier

Search Result 910, Processing Time 0.028 seconds

RF Power Amplifier using 0.25${\mu}{\textrm}{m}$ standard CMOS Technology (0.25${\mu}{\textrm}{m}$ 표준 CMOS 공정을 이용한 RF 전력증폭기)

  • 박수양;전동환;송한정;손상희
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.851-854
    • /
    • 1999
  • A high efficient, CMOS RF power amplifier at a 2.SV power supply for the band of 902-928MHz was designed and analyzed in 0.25${\mu}{\textrm}{m}$ standard CMOS technology. The output power of designed amplifier is being digitally controlled from a minimum of 2㎽ to a maximum of 21㎽, corresponding to a dynamic range of l0㏈ power control. The frequency response of this power amplifier is centered roughly at 915MHz. The power added efficiency of designed amplifer is almost 48% at maximum output power of 21㎽.

  • PDF

Ku-Band Three-Stack CMOS Power Amplifier to Enhance Output Power and Efficiency (출력 전력 및 효율 개선을 위한 3-스택 구조의 Ku 대역 CMOS 전력 증폭기)

  • Yang, Junhyuk;Jang, Seonhye;Jung, Hayeon;Joo, Taehwan;Park, Changkun
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.133-138
    • /
    • 2021
  • We propose a Ku-band three-stack CMOS power amplifier to enhance the output power and efficiency. To minimize the dc power consumption, the driver stage is designed using common-source structure. To obtain high output power and utilize a voltage combining method, the power stage is designed using stack structure. To verify the proposed power amplifier structure, we design a Ku-band power amplifier using 65-nm RFCMOS process which provide nine metal layers. The P1dB, power-added efficiency, and gain are higher than 20 dBm, 23 dB, and 25%, respectively, while the operating frequency is 14 GHz-16 GHz.

Design of a Dual Band High PAE Power Amplifier using Single FET and CRLH-TL (Single FET와 CRLH 전송선을 이용한 이중대역 고효율 전력증폭기 설계)

  • Kim, Seon-Sook;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.56-61
    • /
    • 2010
  • In this paper, high efficient power amplifier with dual band has been realized. Dual band power amplifier have used modify stub matching for single FET, center frequency 2.14GHz and 5.2GHz respectively. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of the all harmonic components is very difficult m dual-band, we have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Dual-band characteristics in the output has to balance. Two operating frequencies are chosen at 2.14 GHz and 5.2 GHz in this work. The measured results show that the output power of 28.56 dBm and 29 dBm was obtained at 2.14 GHz and 5.2 GHz, respectively. At this point, we have obtained the power-added efficiency (PAE) of 65.824 % and 69.86 % at two operation frequencies, respectively.

Design of High Efficiency and Linearity Doherty Power Amplifier Using Adaptive Bias Technique and DGS for Wibro Applications (적응형 바이어스 기법과 DGS를 이용한 와이브로용 고효율 고선형 도허티 전력증폭기 설계)

  • Oh, Chung-Gyun;Son, Sung-Chan
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.8 no.1
    • /
    • pp.12-17
    • /
    • 2009
  • In this paper, We play it for the purpose of study about the power amplifier which applied DGS and adaptive bias circuit structure to general Doherty amplifier for the efficiency of a RF power amplifier and a linearity improvement in the WiBro band. As for the IMD3, 3.4dBc was improved with -26.3dBc when we did the measurement result existing Doherty power amplifier and comparison of the Doherty power amplifier which applied an adaptive bias circuit and the DGS which proposed in this paper, and the mean power efficiency verified what was increased in 37%. Also, we were able to know PAE of 36.6% with output power 34.0dBm in P1dB when magnitude of an input signal was 25.6dBm. we did 6dB back off in output P1dB in order to confirm the ACPR which was a nonlinear characteristic and measured the ACPR. we showed the -34.55dBc which was a value of -34.5dBc or below in the 4.77MHz off-set that was a transmission standard. Therefore, we were able to know that we were satisfied with a spectrum mask standard.

  • PDF

Novel Design of Ultrashort Pulse Excimer Laser Amplifier System I (Energy Characteristics)

  • Lee, Young-Woo
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.39-43
    • /
    • 2003
  • The technology required to advance the state of the art of ultra-high-intensity excimer amplifier construction to the 100 J/100fs output pulse level is identified. The preliminary design work for very large final amplifier pumped by electron beam module is described, and key design problems and approaches are presented and discussed in detail based on the recent experimental and theoretical results.

A Reconfigurable CMOS Power Amplifier for Multi-standard Applications (다양한 표준에서 사용 가능한 CMOS 전력 증폭기)

  • Yun, Seok-Oh;Yoo, Hyung-Joun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.89-94
    • /
    • 2007
  • For successful implementation of multi-standard transmitter, reconfigurable architecture and component design are essential. This paper presents a reconfigurable CMOS power amplifier designed CMOS 0.25 um process. Designed power amplifier can be operated at 0.9, 1.2, 1.75, and 1.85 GHz. Also, it can be used at 2.4 GHz by using bonding wire inductor. The interstage matching network is composed of two inductors and four switches, and operation frequency can be varied by controlling switches. Proposed power amplifier can be used as a power amplifier in low power applications such as ZigBee or Bluetooth application and used as a driver amplifier in high power application such as CDMA application. Designed power amplifier has 18.2 dB gain and 10.3 dBm output power at 0.9 GHz. Also, it represented 10.3 (18.1) dB gain and 5.2 (10) dBm output power at 1.75 (2.4) GHz.

Design Technology of the Wideband Power Amplifier for Electromagnetic Susceptibility Measurement (EMS 측정용 광대역 전력 증폭기 설계기술에 관한 연구)

  • 조광윤;류근관;홍의석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8B
    • /
    • pp.1464-1471
    • /
    • 1999
  • A wide-band high power amplifier to use for radiated electromagnetic field immunity testing of EMS(Electromagnetic Susceptibility) standards has to meet IEC1000-4-3 specification in the frequency bandwidth of 80MHz to 1000MHz. The power amplifier to be described in this paper consists of driving and power stages with wide-band matched circuits by estimated impedances. The mismatching protection circuit is inserted in it to prevent from damage of power device when the output port of power amplifier is opened or shorted by user's mistake. The characteristics of the power amplifier are obtained output power over 100watts, gain over 40dB and flatness of $\pm$0.3dB in the frequency range of 80 ~300MHz. The harmonics suppression characteristics is measured over 20dBc. This wide-band high power amplifier can be useful fur radiated electromagnetic field immunity testing of IEC 1000-4-3 standard.

  • PDF

Design of Dual-Band Power Amplifier for the RFID Frequency-Band (RFID 대역에서 동작하는 이중 대역 전력증폭기 설계)

  • Kim, Jae-Hyun;Hwang, Sun-Gook;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.376-379
    • /
    • 2014
  • In this paper, we designed more improving a dual-band power amplifier than the transceiver of RFID reader that operates at 910 MHz and 2.45 GHz. A dual-band power amplifier has two circuits. One matching circuit is composed lumped element in the band of 910 MHz. The other matching circuit using distributed element in the high band of 2.45 GHz. So, this dual-band power amplifier works as Band Rejection Filter in the band of 910 MHz but in the high band of 2.45 GHz works as Band Pass Filter. Therefore, this is composed a microstrip transmission line. A power amplifier is showed gains of 8 dB output power at 910 MHz and 1.5 dB output power at 2.45 GHz. If input power is 10 dBm, both of bands output 20 dBm.

Research on PAE of Doherty Amplifier Using Dual Bias Control and PBG Structure (이중 바이어스 조절과 PBG를 이용한 도허티 증폭기 전력 효율 개선에 관한 연구)

  • Kim Hyoung-Jun;Seo Chul-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.8 s.111
    • /
    • pp.707-712
    • /
    • 2006
  • In this paper, dual bias control circuit and PBG(Photonic BandGap) structure have been employed to improve PAE(Power Added Effciency) of the Doherty amplifier on Input power level. The gate and drain bias voltage has been controlled with the envelope of the input RF signal and PBG structure has been employed on the output port of Doherty amplifier. The proposed Doherty amplifier using dual bias controlled circuit and PBG has been improved the average PAE by 8%, $IMD_3$ by -5 dBc. And proposed Doherty amplifier has a high efficiency more than 30% on overall input power level, respectively.