• Title/Summary/Keyword: gradient Ricci soliton

Search Result 36, Processing Time 0.018 seconds

CERTAIN RESULTS ON CONTACT METRIC GENERALIZED (κ, µ)-SPACE FORMS

  • Huchchappa, Aruna Kumara;Naik, Devaraja Mallesha;Venkatesha, Venkatesha
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1315-1328
    • /
    • 2019
  • The object of the present paper is to study ${\eta}$-recurrent ${\ast}$-Ricci tensor, ${\ast}$-Ricci semisymmetric and globally ${\varphi}-{\ast}$-Ricci symmetric contact metric generalized (${\kappa}$, ${\mu}$)-space form. Besides these, ${\ast}$-Ricci soliton and gradient ${\ast}$-Ricci soliton in contact metric generalized (${\kappa}$, ${\mu}$)-space form have been studied.

RIGIDITY OF GRADIENT SHRINKING AND EXPANDING RICCI SOLITONS

  • Yang, Fei;Zhang, Liangdi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.817-824
    • /
    • 2017
  • In this paper, we prove that a gradient shrinking Ricci soliton is rigid if the radial curvature vanishes and the second order divergence of Bach tensor is non-positive. Moreover, we show that a complete non-compact gradient expanding Ricci soliton is rigid if the radial curvature vanishes, the Ricci curvature is nonnegative and the second order divergence of Bach tensor is nonnegative.

∗-RICCI SOLITONS AND ∗-GRADIENT RICCI SOLITONS ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS

  • Dey, Dibakar;Majhi, Pradip
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.625-637
    • /
    • 2020
  • The object of the present paper is to characterize 3-dimensional trans-Sasakian manifolds of type (α, β) admitting ∗-Ricci solitons and ∗-gradient Ricci solitons. Under certain restrictions on the smooth functions α and β, we have proved that a trans-Sasakian 3-manifold of type (α, β) admitting a ∗-Ricci soliton reduces to a β-Kenmotsu manifold and admitting a ∗-gradient Ricci soliton is either flat or ∗-Einstein or it becomes a β-Kenmotsu manifold. Also an illustrative example is presented to verify our results.

The Geometry of 𝛿-Ricci-Yamabe Almost Solitons on Paracontact Metric Manifolds

  • Somnath Mondal;Santu Dey;Young Jin Suh;Arindam Bhattacharyya
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.623-638
    • /
    • 2023
  • In this article we study a 𝛿-Ricci-Yamabe almost soliton within the framework of paracontact metric manifolds. In particular we study 𝛿-Ricci-Yamabe almost soliton and gradient 𝛿-Ricci-Yamabe almost soliton on K-paracontact and para-Sasakian manifolds. We prove that if a K-paracontact metric g represents a 𝛿-Ricci-Yamabe almost soliton with the non-zero potential vector field V parallel to 𝜉, then g is Einstein with Einstein constant -2n. We also show that there are no para-Sasakian manifolds that admit a gradient 𝛿-Ricci-Yamabe almost soliton. We demonstrate a 𝛿-Ricci-Yamabe almost soliton on a (𝜅, 𝜇)-paracontact manifold.

Some Triviality Characterizations on Gradient Almost Yamabe Solitons

  • Uday Chand De;Puja Sarkar;Mampi Howlader
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.4
    • /
    • pp.639-645
    • /
    • 2023
  • An almost Yamabe soliton is a generalization of the Yamabe soliton. In this article, we deduce some results regarding almost gradient Yamabe solitons. More specifically, we show that a compact almost gradient Yamabe soliton having non-negative Ricci curvature is trivial. Again, we prove that an almost gradient Yamabe soliton with a non-negative potential function and scalar curvature bound admitting an integral condition is trivial. Moreover, we give a characterization of a compact almost gradient Yamabe solitons.

SOME RESULTS IN η-RICCI SOLITON AND GRADIENT ρ-EINSTEIN SOLITON IN A COMPLETE RIEMANNIAN MANIFOLD

  • Mondal, Chandan Kumar;Shaikh, Absos Ali
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1279-1287
    • /
    • 2019
  • The main purpose of the paper is to prove that if a compact Riemannian manifold admits a gradient ${\rho}$-Einstein soliton such that the gradient Einstein potential is a non-trivial conformal vector field, then the manifold is isometric to the Euclidean sphere. We have showed that a Riemannian manifold satisfying gradient ${\rho}$-Einstein soliton with convex Einstein potential possesses non-negative scalar curvature. We have also deduced a sufficient condition for a Riemannian manifold to be compact which satisfies almost ${\eta}$-Ricci soliton.

RIGIDITY CHARACTERIZATION OF COMPACT RICCI SOLITONS

  • Li, Fengjiang;Zhou, Jian
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1475-1488
    • /
    • 2019
  • In this paper, we firstly define the Ricci mean value along the gradient vector field of the Ricci potential function and show that it is non-negative on a compact Ricci soliton. Furthermore a Ricci soliton is Einstein if and only if its Ricci mean value is vanishing. Finally, we obtain a compact Ricci soliton $(M^n,g)(n{\geq}3)$ is Einstein if its Weyl curvature tensor and the Kulkarni-Nomizu product of Ricci curvature are orthogonal.

RICCI SOLITONS AND RICCI ALMOST SOLITONS ON PARA-KENMOTSU MANIFOLD

  • Patra, Dhriti Sundar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1315-1325
    • /
    • 2019
  • The purpose of this article is to study the Ricci solitons and Ricci almost solitons on para-Kenmotsu manifold. First, we prove that if a para-Kenmotsu metric represents a Ricci soliton with the soliton vector field V is contact, then it is Einstein and the soliton is shrinking. Next, we prove that if a ${\eta}$-Einstein para-Kenmotsu metric represents a Ricci soliton, then it is Einstein with constant scalar curvature and the soliton is shrinking. Further, we prove that if a para-Kenmotsu metric represents a gradient Ricci almost soliton, then it is ${\eta}$-Einstein. This result is also hold for Ricci almost soliton if the potential vector field V is pointwise collinear with the Reeb vector field ${\xi}$.

CURVATURE ESTIMATES FOR GRADIENT EXPANDING RICCI SOLITONS

  • Zhang, Liangdi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.537-557
    • /
    • 2021
  • In this paper, we investigate the curvature behavior of complete noncompact gradient expanding Ricci solitons with nonnegative Ricci curvature. For such a soliton in dimension four, it is shown that the Riemann curvature tensor and its covariant derivatives are bounded. Moreover, the Ricci curvature is controlled by the scalar curvature. In higher dimensions, we prove that the Riemann curvature tensor grows at most polynomially in the distance function.