DOI QR코드

DOI QR Code

CERTAIN RESULTS ON CONTACT METRIC GENERALIZED (κ, µ)-SPACE FORMS

  • Received : 2018.10.27
  • Accepted : 2019.04.09
  • Published : 2019.10.31

Abstract

The object of the present paper is to study ${\eta}$-recurrent ${\ast}$-Ricci tensor, ${\ast}$-Ricci semisymmetric and globally ${\varphi}-{\ast}$-Ricci symmetric contact metric generalized (${\kappa}$, ${\mu}$)-space form. Besides these, ${\ast}$-Ricci soliton and gradient ${\ast}$-Ricci soliton in contact metric generalized (${\kappa}$, ${\mu}$)-space form have been studied.

Keywords

References

  1. P. Alegre, D. E. Blair, and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math. 141 (2004), 157-183. https://doi.org/10.1007/BF02772217
  2. P. Alegre and A. Carriazo, Submanifolds of generalized Sasakian space forms, Taiwanese J. Math. 13 (2009), no. 3, 923-941. https://doi.org/10.11650/twjm/1500405448
  3. P. Alegre and A. Carriazo, Generalized Sasakian space forms and conformal changes of the metric, Results Math. 59 (2011), no. 3-4, 485-493. https://doi.org/10.1007/s00025-011-0115-z
  4. M. Belkhelfa, R. Deszcz, and L. Verstraelen, Symmetry properties of Sasakian space forms, Soochow J. Math. 31 (2005), no. 4, 611-616.
  5. D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, Berlin, 1976.
  6. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2002. https://doi.org/10.1007/978-1-4757-3604-5
  7. D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), no. 1-3, 189-214. https://doi.org/10.1007/BF02761646
  8. C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Sci. Soc. (2) 33 (2010), no. 3, 361-368.
  9. A. Carriazo, V. Martin Molina, and M. M. Tripathi, Generalized (k, $\mu$)-space forms, Mediterr. J. Math. 10 (2013), no. 1, 475-496. https://doi.org/10.1007/s00009-012-0196-2
  10. U. C. De and K. Mandal, Certain results on generalized (k, $\mu$)-contact metric manifolds, J. Geom. 108 (2017), no. 2, 611-621. https://doi.org/10.1007/s00022-016-0362-y
  11. A. Ghosh, Certain contact metrics as Ricci almost solitons, Results Math. 65 (2014), no. 1-2, 81-94. https://doi.org/10.1007/s00025-013-0331-9
  12. S. Ghosh and U. C. De, On a class of generalized (k, $\mu$)-contact metric manifolds, Jangjeon Math Soc. 13 (2010), 337-347.
  13. A. Ghosh and D. S. Patra, *-Ricci soliton within the frame-work of Sasakian and (k, $\mu$)-contact manifold, Int. J. Geom. Methods Mod. Phys. 15 (2018), no. 7, 1850120, 21 pp. https://doi.org/10.1142/S0219887818501207
  14. T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci *-tensor, Tokyo J. Math. 25 (2002), no. 2, 473-483. https://doi.org/10.3836/tjm/1244208866
  15. T. Hamada and J.-I. Inoguchi, Real hypersurfaces of complex space forms with symmetric Ricci *-tensor, Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 38 (2005), 1-5.
  16. S. K. Hui, S. Uddin, and P. Mandal, Submanifolds of generalized (k, $\mu$)-space-forms, Period. Math. Hungar. 77 (2018), no. 2, 329-339. https://doi.org/10.1007/s10998-018-0248-x
  17. G. Kaimakamis and K. Panagiotidou, *-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys. 86 (2014), 408-413. https://doi.org/10.1016/j.geomphys.2014.09.004
  18. U. K. Kim, Conformally at generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note Mat. 26 (2006), no. 1, 55-67.
  19. M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann. 219 (1976), no. 3, 277-290. https://doi.org/10.1007/BF01354288
  20. T. Koufogiorgos, Contact Riemannian manifolds with constant $\phi$-sectional curvature, Tokyo J. Math. 20 (1997), no. 1, 13-22. https://doi.org/10.3836/tjm/1270042394
  21. T. Koufogiorgos and C. Tsichlias, On the existence of a new class of contact metric manifolds, Canad. Math. Bull. 43 (2000), no. 4, 440-447. https://doi.org/10.4153/CMB-2000-052-6
  22. T. Koufogiorgos and C. Tsichlias, Generalized (k, $\mu$)-contact metric manifolds with llgrad kll = constant, J. Geom. 78 (2003), no. 1-2, 83-91. https://doi.org/10.1007/s00022-003-1678-y
  23. D. G. Prakasha, S. K. Hui, and K. Mirji, On 3-dimensional contact metric generalized (k, $\mu$)-space forms, Int. J. Math. Math. Sci. (2014), Art. ID 797162, 6 pp. https://doi.org/10.1155/2014/797162
  24. C. R. Premalatha and H. G. Nagaraja, Recurrent generalized (k, $\mu$) space forms, Acta Univ. Apulensis Math. Inform. No. 38 (2014), 95-108.
  25. A. Sarkar, U. C. De, and M. Sen, Some results on generalized (k, $\mu$)-contact metric manifolds, Acta Univ. Apulensis Math. Inform. No. 32 (2012), 49-59.
  26. A. A. Shaikh, K. Arslan, C. Murathan, and K. K. Baishya, On 3-dimensional generalized (k, $\mu$)-contact metric manifolds, Balkan J. Geom. Appl. 12 (2007), no. 1, 122-134.
  27. B. Shanmukha, Venkatesha, and S. V. Vishunuvardhana, Some results on generalized (k, $\mu$)-space forms, NTMSCI. 6 (2018), no. 3, 48-56.
  28. R. Sharma, Certain results on K-contact and (k, $\mu$)-contact manifolds, J. Geom. 89 (2008), no. 1-2, 138-147. https://doi.org/10.1007/s00022-008-2004-5
  29. S. Sular and C. Ozgur, Generalized Sasakian space forms with semi-symmetric nonmetric connections, Proc. Est. Acad. Sci. 60 (2011), no. 4, 251-257. https://doi.org/10.3176/proc.2011.4.05
  30. S. Tachibana, On almost-analytic vectors in almost-Kahlerian manifolds, Tohoku Math. J. (2) 11 (1959), 247-265. https://doi.org/10.2748/tmj/1178244584
  31. Venkatesha and B. Shanmukha, $W_2$-curvature tensor on generalized Sasakian space forms, Cubo 20 (2018), no. 1, 17-29. https://doi.org/10.4067/s0719-06462018000100017