DOI QR코드

DOI QR Code

RIGIDITY OF GRADIENT SHRINKING AND EXPANDING RICCI SOLITONS

  • Yang, Fei (School of Mathematics and Physics China University of Geosciences) ;
  • Zhang, Liangdi (School of Mathematics and Physics China University of Geosciences)
  • Received : 2016.04.13
  • Published : 2017.05.31

Abstract

In this paper, we prove that a gradient shrinking Ricci soliton is rigid if the radial curvature vanishes and the second order divergence of Bach tensor is non-positive. Moreover, we show that a complete non-compact gradient expanding Ricci soliton is rigid if the radial curvature vanishes, the Ricci curvature is nonnegative and the second order divergence of Bach tensor is nonnegative.

Keywords

References

  1. S. Bando, Real analyticity of solutions of Hamilton's equation, Math. Z. 195 (1987), no. 1, 93-97. https://doi.org/10.1007/BF01161602
  2. H. D. Cao, G. Catino, Q. Chen, C. Mantegazza, and L. Mazzieri, Bach-flat gradient steady Ricci solitons, Calc. Var. Partial Differentail Equations 49 (2014), no. 1-2, 125-138. https://doi.org/10.1007/s00526-012-0575-3
  3. H. D. Cao and Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J. 162 (2013), no. 6, 1149-1169. https://doi.org/10.1215/00127094-2147649
  4. H. D. Cao and Q. Chen, On locally conformally flat gradient steady Ricci solitons, Trans. Amer. Math. Soc. 354 (2014), no. 5, 2377-2391.
  5. H. D. Cao and D. T. Zhou, On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2009), no. 2, 175-185.
  6. G. Catino, P. Mastrolia, and D. D. Monticelli, Gradient Ricci solitons with vanishing conditions on Weyl, arXiv: 1602.00534v2.
  7. G. Catino, L. Mazzieri, and S. Mongodi, Rigidity of gradient Einstein shrinkers, arXiv:1307.3131v2.
  8. B. L. Chen, Strong uniqueness of the Ricci flow, J. Differential Geom. 82 (2009), no. 2, 363-382. https://doi.org/10.4310/jdg/1246888488
  9. M. Eminenti, G. La Nave, and C. Mantegazza, Ricci solitons: the equation point of view, Manuscripta Math. 127 (2008), no. 3, 345-367. https://doi.org/10.1007/s00229-008-0210-y
  10. M. Fernandez-Lopez and E. Garcia-Rio, Rigidity of shrinking Ricci solitons, Math. Z. 269 (2011), no. 1, 461-466. https://doi.org/10.1007/s00209-010-0745-y
  11. O. Munteanu and N. Sesum, On gradient Ricci solitons, J. Geom. Anal. 23 (2013), no. 2, 539-561. https://doi.org/10.1007/s12220-011-9252-6
  12. P. Petersen andW.Wylie, Rigidity of gradient Ricci Solitons, Pacific J. Math. 56 (2007), no. 2, 329-345.
  13. P. Petersen andW.Wylie, On the classification of gradient Ricci solitons, Geom. Topol. 14 (2010), no. 4, 2277-2300. https://doi.org/10.2140/gt.2010.14.2277