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with the non-zero potential vector field V parallel to ξ, then g is Einstein with Einstein

constant −2n. We also show that there are no para-Sasakian manifolds that admit a gra-
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1. Introduction

Paracontact geometry methods plays an important role in modern mathematics.
In the sam way that almost contact manifolds extend almost Hermitian manifolds,
the geometry of almost paracontact manifolds is a natural extension of almost para-
Hermitian geometry. Over the last few years, the study of paracontact geometry
has evolved from the mathematical formalism of classical mechanics (see [13, 21]).
The concept of Ricci flow, is an evolution equation for metrics defined on con-
nected almost contact metric manifolds whose automorphism groups have maximal
dimensions.

Very recently, in [14], Güler and Crasmareanu studied Ricci-Yamabe flow of
the type (α, β). A soliton to the Ricci-Yamabe flow is called Ricci-Yamabe soliton
(abbreviated to RYS) if it moves only by one parameter group of diffeomorphism
and scaling. The metric of the Riemannain manifold (Mn, g), n > 2 is said to admit
a (α, β)-Ricci-Yamabe soliton or simply a Ricci-Yamabe soliton (g, V, λ, α, β) if it
satisfies the equation

LV g + 2αRicg + (2λ− βr)g = 0,

where LV g denotes the Lie derivative of the metric g along the vector field V , Ricg
is the Ricci tensor, r is the scalar curvature and λ, α, β are real scalars.

In [8], Dey et al. defined a δ-Ricci-Yamabe soliton (in short δ-RYS). A complete
Riemannian manifold (Mn, g) is said to be a δ-Ricci-Yamabe almost soliton, denoted
by (Mn, g, V, δ, λ), if there exists smooth vector field V on Mn, a soliton function
λ ∈ C∞(Mn) and a non-zero real valued function δ on Mn such that

(1.1) δLV g + 2αRicg + (2λ− βr)g = 0.

This soliton is called shrinking, steady or expanding according as λ is negative, zero
or positive respectively. If the potential vector field V can be written as a gradient
of a smooth function u on Mn, then the δ-Ricci-Yamabe almost soliton is called a
gradient δ-Ricci-Yamabe almost soliton. In this case, (1.1) can be expressed as

(1.2) δ∇2u+ αRicg + (λ− 1

2
βr)g = 0,

where ∇2u be the Hessian of u. We denote this as (Mn, g,Du, λ). Now, the identity
(1.2) can be written as

(1.3) δHessf + αRicg + (λ− 1

2
βr)g = 0.

There are many papers that prove the existence of Ricci solitons and gradient
Ricci solitons on paracontact manifolds. In particular, Calvaruso et al. [3] exhibited
Ricci solitons on 3-dimensional almost paracontact manifolds. Ricci solitons and
their generalizations have been well studied within the framework of contact and
paracontact metric manifolds. See [1] for fundamental background, and say, [9]
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which list many recent related papers in it extensive references. Recently, Erken
[11] demonstrated Yamabe solitons on 3-dimensional para-cosymplectic manifold
and proved, for example, that the manifold is either η-Einstein or Ricci flat.

In [17, 19], Patra gave answers to the following important questions associated
to almost Ricci, and almost Ricci–Bourguignon, solitons: Under which conditions
is a (gradient) Ricci almost soliton Einstein? ...trivial? and Under which conditions
is a (gradient) Ricci–Bourguignon almost soliton Einstein (trivial) on a paracontact
metric manifold?. It is natural to ask the same questions about more general soli-
tons.

Question. Under which conditions is a (gradient) δ-Ricci-Yamabe almost soliton
on a paracontact metric manifold Einstein (trivial)?

We find sufficient conditions under which a paracontact metric manifold admit-
ting a δ-Ricci-Yamabe almost soliton or a gradient δ-Ricci-Yamabe almost soliton
is Einstein (trivial). We prove the following.

Lemma 1. If a K-paracontact metric g is a δ-Ricci-Yamabe almost soliton, then

(1.4) (LV η)(ξ) = −η(LV ξ) =
1

δ
{4nα− (2λ− βr)}.

Patra [17] proved that “if a paracontact metric manifold endows a Ricci soliton
with nonzero potential vector field V parallel to the Reeb vector field ξ and the Ricci
operator commutes with paracontact structure ϕ, then the manifold is Einstein with
Einstein constant −2n”. Here, we generalize this result for δ-Ricci-Yamabe almost
soliton and, removing the commutativity condition, prove that the potential vector
field V being parallel to ξ is a sufficient condition under which a K-paracontact
manifold admitting a δ-Ricci-Yamabe almost soliton is Einstein (trivial). So, we
have the following.

Theorem 1. If K-paracontact metric g endows a δ-Ricci-Yamabe almost soli-
ton with the non-zero potential vector field V is parallel to ξ, then g is Einstein
with Einstein constant −2n. Moreover, V is a constant multiple of ξ.

After Theorem 1, we prove the following result.

Proposition 1. Let M2n+1(ϕ, ξ, η, g) be a para-Sasakian manifold. If the metric g
represents a δ-Ricci-Yamabe almost soliton with the potential vector field V , then
the following relation holds:

(∇ξLV ∇)(ξ, ξ) = (βr − 2λ+ 4nα)η(∇ξDδ) + β{η(∇ξDr) + ξ(ξ(r))ξ

− ξ(r)Dδ −∇ξDr} − 2{η(∇ξDλ) + ξ(ξ(λ))ξ −∇ξDλ

− ξ(λ)Dδ}+ (2λ− βr − 4nα)∇ξDδ.

Next, we get results on K-paracontact manifold and para-Sasakian manifold
whose metric endows a gradient δ-Ricci-Yamabe almost soliton. We state this as
follows.
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Theorem 2. Let M2n+1(ϕ, ξ, η, g) be a K-paracontact manifold. If the metric g
represents a gradient δ-Ricci-Yamabe almost soliton, then M2n+1 satisfies either

(1.5) (∇ξQ)V1 + 2ϕQV1 + 4nϕV1 = 0

or α = 0, that is, it becomes a gradient δ-Yamabe almost soliton, provided β = 2.

In [12], Ghosh proved that if a K-contact manifold endows a gradient Ricci al-
most soliton, then it is of constant scalar curvature. Recently, Patra [18] generalized
this result and proved that if a K-contact manifold admits a non-trivial gradient
Ricci almost soliton, then the manifold becomes an Einstein metric with constant
scalar curvature 2n(2n + 1). Here, we prove the nonexistence of a para-Sasakian
metric g admitting a gradient Ricci–Yamabe almost soliton with a Ricci operator
Q which commutes with a paracontact metric structure ϕ.

Theorem 3. There does not exist a para-Sasakian manifold M2n+1(ϕ, ξ, η, g) with
gradient δ-Ricci-Yamabe almost soliton.

As every para-Sasakian manifold is always K-paracontacto, this theorem also
holds for K-paracontact manifolds.

Now, we turn our attention to a gradient δ-Ricci-Yamabe almost soliton on a
(κ, µ)-paracontact manifold, and state the following results.

Lemma 5. If a (κ, µ)-paracontact manifold (dimension (2n+1)) with κ > −1
endows a gradient δ-Ricci-Yamabe almost soliton, then we have

(1.6) κ(2− µ) = µ(n+ 1).

By virtue of Lemma 5 and Theorem 3, we can assert the following:

Theorem 4. If a (κ, µ)-paracontact manifold (dimension (2n+1)) with κ > −1
admits a gradient δ-Ricci-Yamabe almost soliton, then the manifold is locally iso-
metric to the product of a flat (n+ 1)-dimensional manifold and an n-dimensional
manifold of negative constant curvature −4.

The structure of this paper is the following. In Section 2, after a brief introduc-
tion, we discuss some preliminaries of paracontact metric manifolds. In Section 3,
we examine δ-Ricci-Yamabe almost solitons on K-paracontact and para-Sasakian
manifolds. Also, we show that if K-paracontact metric g represents δ-Ricci-Yamabe
almost soliton with the non-zero potential vector field V is parallel to ξ, then g
is Einstein with Einstein constant −2n. Section 4 deals with a gradient δ-Ricci-
Yamabe almost solitons on K-paracontact and para-Sasakian manifolds, and proves
that there does not exist such a manifold. In the last section, we study δ-Ricci-
Yamabe almost solitons within the framework of (κ, µ)-paracontact manifold. Here,
we prove that if a (κ, µ)-paracontact manifold with κ > −1 admits a gradient δ-
Ricci-Yamabe almost soliton, then the manifold is locally isometric to the product
of a flat (n + 1)-dimensional manifold and a n-dimensional manifold of negative
constant curvature −4.
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2. Preliminaries

In this section, we discuss some definitions and identities of paracontact metric
manifolds (for more details see [4, 5, 15, 23]). A dimensional smooth manifold M is
said to be an almost paracontact structure (ϕ, ξ, η) if it endows a (1, 1)-tensor field
ϕ, a vector field ξ and a 1-form η such that

(2.1) ϕ2(V1) = V1 − η(V1)ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0

and there is a paracontact distribution D : q ∈ M → Dq ⊂ TqM : Dq = Ker(η) =
{x ∈ TqM : η(x) = 0} generated by η. If an almost paracontact manifold admits a
pseudo-Riemannian metric g such that

(2.2) g(ϕV1, ϕV2) = −g(V1, V2) + η(V1)η(V2)

for all V1, V2 on M , then M has an almost paracontact metric structure (ϕ, ξ, η, g)
and g is called a compatible metric. Notice that, since Eq. (2.2) holds any com-
patible metric g has signature (n + 1, n). The fundamental 2-form Φ of an almost
paracontact metric structure (ϕ, ξ, η, g) is defined by Φ(V1, V2) = g(V1, ϕV2) for all
vector fields V1, V2 on M . The manifold M2n+1(ϕ, ξ, η, g) is called paracontact met-
ric manifold, if Φ = dη. Here, η is a contact form, i.e., η ∧ (dη)n ̸= 0, ξ is its Reeb
vector field and M is a contact manifold (see [4]). We define self-adjoint operators
h = 1

2Lξϕ and l = R(., ξ)ξ, where Lξ is the Lie-derivative along ξ and R is the
Riemannian curvature tensor of g on a paracontact metric manifold. The operators
h and l satisfy [23]:

(2.3) Trgh = 0, T rg(hϕ) = 0, hξ = 0, lξ = 0, hϕ = −ϕh.

The following results hold on a paracontact metric manifold [23]:

(2.4) ∇V1
ξ = −ϕV1 + ϕhV1, ∇ξξ = 0, V1 ∈ χ(M),

(2.5) ∇ξh = −ϕ+ ϕh2 − ϕl,

(2.6) Ricg(ξ, ξ) = g(Qξ, ξ) = Trl = Tr(h2)− 2n

(2.7) (∇ϕV1
ϕ)ϕV2 − (∇V1

ϕ)V2 = 2g(V1, V2)− η(V2)(V1 − hV1 + η(V1)ξ)

for all V1, V2 on M2n+1, where ∇ is the operator of covariant differentiation of g
and Q denotes the Ricci operator given by Ricg(V1, V2) = g(ϕV1, V2) ∀ V1, V2 on
M2n+1. M is said to be a K-paracontact manifold if the vector field ξ is a killing
(equivalently h = 0). On a K-paracontact manifold the following formula holds
[23]:

(2.8) ∇V1
ξ = −ϕV1, (∇V1

η)V2 = g(V1, V2)− η(V1)η(V2),
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(2.9) R(V1, ξ)ξ = −V1 + η(V1)ξ,

(2.10) Qξ = −2nξ

for any vector fields V1, V2 on M2n+1. Moreover, from [23] we have (Lξg)(V1, V2) =
2g(V1, ϕhV2) and therefore, M is K-paracontact if and only if ϕh = 0.

A paracontact metric structure on M is said to be normal if the almost para-
complex structure on M ×R defined by

J(V1, fd/dt) = (ϕV1 + fξ, η(V1)d/dt),

where f is a real function on M × R, is integrable. A normal paracontact metric
manifold is said to be para-Sasakian. A para-Sasakian manifold is always a K-
paracontact manifold. A 3-dimensional K-paracontact manifold is a para-Sasakian
manifold [2], which may not be true in higher dimensions [16]. Equivalently, a
paracontact metric manifold is said to para-Sasakian if [23]:

(2.11) (∇V1ϕ)V2 = −g(V1, V2)ξ + η(V2)V1

for any vector fields V1, V2 on M2n+1. Further, on any para-Sasakian manifold [23]:

(2.12) R(V1, V2)ξ = η(V1)V2 − η(V2)V1,

(2.13) R(V1, ξ)ξ = −V1 + η(V1)ξ

for any vector fields V1, V2 on M2n+1.
We recall the following commutation formula from [22]

(LV ∇V3g −∇V3LV g −∇[V,V3]g)(V1, V2) = −g((LV ∇)(V3, V1), V2)

−g((LV ∇)(V3, V2), V1)

for all vector fields V1, V2 on M2n+1. By virtue of parallelism of the pseudo-
Riemannian metric g, this formula yields

(2.14) (∇V3
LV g)(V1, V2) = g((LV ∇)(V3, V1), V2) + g((LV ∇)(V3, V2), V1)

for all vector fields V1, V2 on M2n+1. We also recall the following from [10, p. 39]

(2.15) (LV ∇)(V1, V2) = ∇V1
∇V2

V −∇∇V1
V2V +R(V, V1)V2

for any vector fields V1, V2, V on M2n+1.
Let R be the Riemannian curvature tensor of the Levi-Civita connection ∇ of

g, given by

(2.16) R(V1, V2) = ∇V1∇V2 −∇V2∇V1 −∇[V1,V2], V1, V2 ∈ χ(M).
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where χ(M) is the set of all vectors fields on M . On a paracontact metric manifold
the following formula holds

(2.17) ∇V1
ξ = V1 − η(V1)ξ − ϕhV1(∇ξξ = 0)

for any V1, V2 ∈ χ(M),

(2.18) R(V1, V2)ξ = η(V1)(V2−ϕhV2)−η(V2)(V1−ϕhV1)+(∇V2ϕh)V1−(∇V1ϕh)V2

for any vector fields V1, V2 ∈ χ(M).
The reading of nullity conditions on paracontact geometry is an attractive topic

in paracontact geometry. In [6], Cappelletti-Montano et al. initiated the notion
of (κ, µ)-paracontact structure. They defined a (κ, µ)-paracontact manifold as a
paracontact metric manifold M2n+1(ϕ, ξ, η, g) whose curvature tensor satisfies

(2.19) R(V1, V2)ξ = κ{η(V2)V1 − η(V1)V2}+ µ{η(V2)h
′V1 − η(V1)h

′V2}

for some real numbers (κ, µ). Many geometers have studied (κ, µ)-paracontact
manifolds and attained several significant properties of these manifold (see [7, 20]).
On a (κ, µ)-paracontact manifold one has [6]

(2.20) h = 0 ⇔ h′ = 0, h′2V1 = (k + 1)ϕ2V1,

(2.21) h2(V1) = −(κ+ 1)[V1 − η(V1)ξ]

for V1 ∈ χ(M). And also we have the following

(2.22) R(ξ, V1)V2 = κ{g(V1, V2)ξ − η(V2)V1} − 2{g(h′V1, V2)ξ − η(V2)h
′V1},

(2.23) QV1 = −2nV1 + 2n(κ+ 1)η(V1)ξ − 2nh′(V1),

(2.24) r = 2n(κ− 2n),

(2.25) (∇V1
η)V2 = g(V1, V2)− η(V1)η(V2) + g(h′V1, V2),

where V1 and V2 are any vector fields on M .

3. On δ-Ricci-Yamabe Almost Solitons

In this section, we prove the results we stated about δ-Ricci-Yamabe almost
solitons on K-paracontact and para-Sasakian manifolds. We begin with the follow-
ing.

Proof of the Lemma 1. In light of identity (2.10), the soliton equation (1.1) gives

(3.1) (LV g)(V1, ξ) =
1

δ
{4nα− (2λ− βr)}η(V1).
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Taking the Lie differentiation of η(V1) = g(V1, ξ) by the vector field V , we achieve
(LV η)(V1)− g(LV ξ, V1) = (LV g)(V1, ξ). By using (3.1), we acquire

(3.2) (LV η)(V1)− g(LV ξ, V1) =
1

δ
{4nα− (2λ− βr)}η(V1).

The result then follows using (3.2) with g(ξ, ξ) = 1. 2

Lemma 2. [17] On a K-paracontact manifold M2n+1(ϕ, ξ, η, g), we have

(i)(∇V1
Q)ξ = QϕV1 + 2nϕV1,

(ii)(∇ξQ)V1 = QϕV1 − ϕQV1

for all vector fields V1 on M2n+1(ϕ, ξ, η, g).

Proof of the Theorem 1. Since the potential vector field V is parallel to ξ, i.e.,
V = σξ for a non-zero smooth function σ onM , we acquire∇V1

V = V1(σ)ξ−σ(ϕV1)
by the derivative of V = σξ covariantly by V1 ∈ χ(M) and using the identity (2.8).
Thus, the equation (1.1) reduces to

(3.3) δ{V1(σ)η(V2) + V2(σ)η(V1)}+ 2αRicg(V1, V2) + (2λ− βr)g(V1, V2) = 0

for all V1, V2 ∈ χ(M). Now, we insert V1 = V2 = ξ into (3.3) and use fact (2.10) to
infer ξ(σ) = 1

2δ{4nα − (2λ− βr)}. Setting V2 = ξ in (3.3) and recalling (2.10), we
get

V1(σ) = ξ(σ)η(V1), V1 ∈ χ(M)

and therefore, by (2.8), get

(3.4) Hessσ(V1, V2) = V1(ξ(σ))η(V2)− ξ(σ)g(ϕV1, V2), V1, V2 ∈ χ(M).

Since Hessσ is symmetric and ϕ is skew-symmetric, by (2.1) and (3.4), we get

ξ(σ)dη(V1, V2) = 0 ∀V1, V2 ⊥ ξ,

as dη(V1, V2) = g(V1, ϕV2). This exposes that ξ(σ) = 0, as dη is a non-zero on M ,
hence, ∇σ = 0. Hence, σ is constant on M . This simplifies the equation (3.4) to

2αRicg(V1, V2) = −(2λ− βr)g(V1, V2) = −4nαg(V1, V2), V1, V2 ∈ χ(M),

using Qξ = −2nξ and hence (M, g) is an Einstein with Einstein constant −2n. This
finishes the proof. 2

Proof of the Proposition 1. Now, we use identities (1.1) and (2.14) to acquire

g((LV ∇)(V3, V1), V2) + g((LV ∇)(V3, V2), V1) =
− 1

δ [V3(δ)(LV g)(V1, V2) + 2α(∇V3
Ricg)(V1, V2)− {2V3(λ)− βV3(r)}g(V1, V2)]
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for all vector fields V1, V2, V3 on M2n+1. Interchanging cyclicly the roles of V1, V2

and V3 in the upstairs equalization and with the straight enumeration we gain

g((LV ∇)(V1, V2), V3) = −1

δ
[2α{(∇V1

Ricg)(V2, V3) + (∇V2
Ricg)(V1, V3)

− (∇V3
Ricg)(V1, V2)}+ V1(δ)(LV g)(V2, V3)

+ V2(δ)(LV g)(V1, V3)− V3(δ)(LV g)(V1, V2)

+ {2V3(λ)− βV3(r)}g(V1, V2)− {2V1(λ)

− βV1(r)}g(V2, V3)− {2V2(λ)− βV2(r)}g(V1, V3)]

∀ V1, V2, V3 on M2n+1. Recall the following from [23, Lemma 3.15]:

(∇V3
Ricg)(V1, V2) = (∇V1

Ricg)(V2, V3)− (∇ϕV2
Ricg)(ϕV1, V3)

− η(V1)Ricg(V2, V3)− 2η(V2)Ricg(ϕV1, V3)

− 2nη(V1)g(ϕV2, V3)− 4nη(V2)g(ϕV1, V3).(3.5)

Using (∇V3
Ricg)(V1, V2) = g((∇V3

Q)V1, V2) and the identity (2.1) of Lemma 2, we
find ∇ξQ = Qϕ− ϕQ = 2nη⊗ ξ after putting V3 = ξ into (3.5). With this, Lemma
2 and substituting V2 by ξ in (3.5) we can get

(LV ∇)(V1, ξ) = −2α

δ
(2nη(V1) + 4nϕV1) + {βV1(r)− 2V1(λ)}ξ

− {(2λ− βr)ξ − 4nα}V1(δ) + {βξ(r)− 2ξ(λ)}V1

− {2αQV1 + (2λ− βr)V1}ξ(δ) + {(2λ− βr − 4nα)Dδ

+ 2Dλ− βDr}η(V1)(3.6)

for all V1 on M . Now, we taking the covariant differentiation of (3.6) by a vector
field V2 on M2n+1 and applying (2.8), (2.10) and (2.11) we obtain

(∇V2LV ∇)(V1, ξ) + (LV ∇)(V1, V2)− η(V2)(LV ∇)(V1, ξ)

= −2α

δ
{2n(∇V2

η)V1 + 4n(∇V2
ϕ)V1}

+ 2αV2(δ)(2QϕV1 + 4nϕV1) + {βg(V1,∇V2
Dr)

− 2g(V1,∇V2
Dλ)} − {βV1(r)− 2V1(λ)}ϕ2V2

+ V1(δ){2λ− βr − 4nα}ϕ2V2 − (2λ− βr − 4nα)

g(V1,∇V2
Dδ) + {βV2(ξ(r))− 2V2(ξ(λ))}V1

+ {(2V2(λ)− βV2(r))Dδ + (2λ− βr − 4nα)∇V2
Dδ

+ 2∇V2
Dλ− β∇V2

Dr}η(V1) + {(2λ− βr − 4nα)Dδ

+ 2Dλ− βDr}(g(V1, V2)− η(V1)η(V2)).(3.7)

Now, we plug V1 = ξ, V2 = ξ in the equation (3.7) and using (2.1), (2.8) and (2.11)
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to achieve

(∇ξLV ∇)(ξ, ξ) = (βr − 2λ+ 4nα)η(∇ξDδ) + β{η(∇ξDr) + ξ(ξ(r))ξ

− ξ(r)Dδ −∇ξDr} − 2{η(∇ξDλ) + ξ(ξ(λ))ξ −∇ξDλ

− ξ(λ)Dδ}+ (2λ− βr − 4nα)∇ξDδ.

This completes the proof. 2

4. On Gradient Almost δ-Ricci-Yamabe Solitons

In this section, we take into account the gradient almost δ-Ricci-Yamabe solitons
on paracontact metric manifolds.
Let a paracontact metric manifold M2n+1(ϕ, ξ, η, g) admits a gradient almost δ-
Ricci-Yamabe soliton. Then the soliton equation (1.2) can be demonstrated as

(4.1) δ∇V1
∇u+ αQV1 + (λ− βr

2
)V1 = 0

for all V1 ∈ χ(M) and hence the curvature tensor gained from (4.1) and (2.16)
satisfies

δR(V1, V2)∇u = α{(∇V2
Q)V1 − (∇V1

Q)V2}+ V1(λ)V2

− V2(λ)V1 −
β

2
{V1(r)V2 − V2(r)V1}.(4.2)

Proof of the Theorem 2. First, we take the covariant differentiation of (2.10)
through the vector field V1 ∈ χ(M), and apply (2.8) to yield

(4.3) (∇V1
Q)ξ = QϕV1 + 2nϕV1.

Since ξ is killing, we have

0 = (LξQ)V1

= Lξ(QV1)−Q(LξV1)

= [ξ,QV1]−Q([ξ, V1])

= ∇ξ(QV1)−∇QV1
ξ −Q(∇ξV1 −∇V1

ξ)

= (∇ξQ)V1 −∇QV1
ξ +Q(∇V1

ξ)

It follows from (2.8) that ∇ξQ = Qϕ − ϕQ. Now, we replace V1 by ξ into identity
(4.2) and then replace the scalar product with V1 ∈ χ(M) to yield

δg(R(ξ, V2)∇u, V1) = α{g(ϕQV2, V1) + 2ng(ϕV2, V1) + 2nη(V1)η(V2)}

+ {ξ(λ)− β

2
ξ(r)}g(V1, V2)

− {V2(λ)−
β

2
V2(r)}η(V1).(4.4)

Now, by identity (4.3) and equation (2.8) we get
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g((∇V1
ϕ)V2, V3)− g((∇V2

ϕ)V1, V3) = g(R(V1, V2)V3, ξ).

Using the Bianchis’s first identity, we achieve

g(R(ξ, V3)V2, V1) = g((∇V3
ϕ)V2, V1), V1, V2, V3 ∈ χ(M).

We insert the above identity into (4.4) and ξ(r) = 0 (which holds since ∇ξQ =
Qϕ− ϕQ) to get

δg((∇V2ϕ)V1,∇u) + α{g(ϕQV2, V1) + 2ng(ϕV2, V1) + 2nη(V1)η(V2)}

+ξ(λ)g(V1, V2)− {V2(λ)−
β

2
V2(r)}η(V1) = 0.(4.5)

Now setting V1 = ϕV1, and V2 = ϕV2 in (4.5) and eliminating (4.5) from the results
expression, we get

δ{g((∇ϕV2
ϕ)ϕV1,∇u)− g((∇V2

ϕ)V1,∇u)} − αg(QϕV2 + ϕQV2, V1)

−2ξ(λ)g(V1, V2) + V2(λ− β

2
r)η(V1) + ξ(λ)η(V1)η(V2)

−4nαg(ϕV2, V1) = 0.(4.6)

Herre we also used (2.10). The following formula for paracontact metric manifolds
is from [23, Lemma 2.7]:

(4.7) (∇ϕV2
ϕ)ϕV1 − (∇V2

ϕ)V1 = 2g(V1, V2)ξ − η(V1){V2 − hV2 + η(V2)ξ}.

Using (4.6) and (4.7), we can infer that

2ξ(δu− λ)g(V1, V2) + V2(λ− βr

2
− δu)η(V1)

−ξ(δu− λ)η(V1)η(V2) = αg(QϕV2 + ϕQV2, V1) + 4nαg(ϕV2, V1),(4.8)

since h = 0 for K-paracontact manifold. At this point, placing V2 by ξ in (4.2), we
get

δR(V1, ξ)∇u = α{(∇ξQ)V1 − (∇V1
Q)ξ}+ V1(λ)ξ

− ξ(λ)V1 −
β

2
{V1(r)ξ − ξ(r)V1},

replacing the scalar product in the above result with ξ and using (2.9) and (4.3) we
get

(4.9) V1(λ− uδ − βr

2
) = ξ(λ− uδ)η(V1),

by∇ξQ = Qϕ−ϕQ. Let σ = λ−uδ−βr
2 . Equation (4.9) becomes V1(σ) = ξ(σ)η(V1),

for V1 ∈ χ(M) as ξ(r) = 0. In this manner, by the argument in Section 3, we get
that σ = λ− uδ− βr

2 is constant on M . Using ∇ξQ = Qϕ− ϕQ which follows from
(4.8), we get
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α{g((∇ξQ)V2, V1) + 2g(ϕQV2, V1) + 4ng(ϕV2, V1)} = 0.

This implies that α{g((∇ξQ)V2 + 2ϕQV2 + 4nϕV2, V1)} = 0. So either α = 0 or
g((∇ξQ)V2 + 2ϕQV2 + 4nϕV2, V1) = 0, which completes the proof. 2

Proof of the Theorem 3. On a para-Saskian manifold, a Ricci operator sat-
isfies the following (see [23, Lemma 3.15])

(4.10) QV1 = ϕQϕV1 − 2nη(V1)ξ. V1 ∈ χ(M)

With this and (2.1) we see that the Ricci operator Q deflects the paracontact struc-
ture ϕ.

On the other hand, para-Sasakian manifolds are K-paracontact. So one has
∇ξQ = Qϕ − ϕQ = 2nη ⊗ ξ, which it implies the contradiction η ⊗ ξ = 0. This
finishes the proof. 2

By virtue of this formula ∇ξQ = Qϕ − ϕQ = 2nη ⊗ ξ, Theorem 3 gives a
non-existence theorem.

5. δ-Ricci-Yamabe Almost Solitons on (κ, µ)-Paracontact Manifold

In this last section, we discuss the nullity agreements on paracontact geome-
try. In [5], Cappelletti-Montano et al. introduced the notion of (κ, µ)-paracontact
structures. According to them a (κ, µ)-paracontact manifold is a paracontact metric
manifold M2n+1(ϕ, ξ, η, g) whose curvature tensor satisfies

(5.1) R(V1, V2)ξ = κ{η(V2)V1 − η(V1)V2}+ µ{η(V2)hV1 − η(V1)hV2}

for all V1, V2 ∈ χ(M) and for some real numbers (κ, µ). Equivalently, this equation
can be written as

(5.2) R(V1, ξ)V2 = κ{η(V2)V1 − g(V1, V2)ξ}+ µ{η(V2)hV1 − g(hV1, V2)ξ}

for all V1, V2 ∈ χ(M). On a (κ, µ)-paracontact manifold one has [5]:

(5.3) h2 = (κ+ 1)ϕ2

(5.4) Qξ = 2nκξ

Lemma 3. (see [5]). In any (κ, µ)-paracontact manifold M2n+1(ϕ, ξ, η, g), the Ricci
operator Q of M can be written as

QV1 = [2(1− n) + nµ]V1 + [2(n− 1) + µ]hV1

+ [2(n− 1) + n(2κ− µ)]η(V1)ξ, for κ > −1(5.5)

for any vector field V1 on M2n+1. Moreover, the scalar curvature of M is
2n(2(1− n) + κ+ nµ).
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Lemma 4. (see [5]). On a (κ, µ)-paracontact manifold M2n+1(ϕ, ξ, η, g), we have

(5.6) (∇ξh)V1 = −µϕhV1

for any vector field V1 in M2n+1.

Proof of the Lemma 5. First, taking the covariant derivative of (5.4) through
an arbitrary vector field V1 on M and applying (2.4) we get

(5.7) (∇V1
Q)ξ = Q(ϕ− ϕh)V1 − 2nκ(ϕ− ϕh)V1.

With (1.2) this can be written as

(5.8) δ∇V2Du+ αQV2 + (λ− βr

2
)g = 0

for all vector fields V2 on M2n+1. Using the foregoing equation in the famous
manifestation of the curvature tensor R(V1, V2) = [∇V1

,∇V2
] − ∇[V1,V2], we can

easily derive

(5.9) δR(V1, V2)Du = α{(∇V2Q)V1 − (∇V2Q)V1}

for all V1 and V2 on M2n+1. In this manner, taking the scalar product of (5.9)
along ξ and making use of (5.3) and (5.7) leaves that

δg(R(V1, V2)Du, ξ) = α{g((Qϕ+ ϕQ)V2, V1)

− g((Qϕh+ hϕQ)V2, V1)− 4nκg(ϕV2, V1)}.(5.10)

Replacing V1 by ϕV1 and V2 by ϕV2 in (5.10) and noting that R(ϕV1, ϕV2)ξ = 0
(from (5.1)) and (2.1), we get

(5.11) QϕV1 + ϕQV1 + ϕQhV1 + hQϕV1 − 4nκϕV1 = 0.

Now, we put V1 = ϕV1 into (5.5) and use ϕξ = 0 to obtain

QϕV1 = [2(1− n) + nµ]ϕV1 + [2(n− 1) + µ]hϕV1.

Dy acting h on the last equation and making use of (2.1), (5.3) and hξ = 0 leaves

hQϕV1 = [2(1− n) + nµ]hϕV1 + (κ+ 1)[2(n− 1) + µ]ϕV1.

In addition, operating ϕ on (5.5) and using ϕξ = 0, we get

ϕQV1 = [2(1− n) + nµ]ϕV1 + [2(n− 1) + µ]ϕhV1.

Now, we replace V1 by hV1 in the foregoing equation and use (5.3) to yield

ϕQhV1 = [2(1− n) + nµ]ϕhV1 + (κ+ 1)[2(n− 1) + µ]ϕV1.
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Applying the last four equations in (5.9) and also using ϕh = −hϕ we obtain (1.6).
This completes the proof. 2

Proof of the Theorem 4. First, we substitute ξ for V1 in (5.10) and use the
identity (5.4) and hξ = ϕξ = 0 to acquire δg(R(ξ, V2)ξ,Du) = 0. With this and
(5.3) we get

(5.12) κ{Du− (ξu)ξ}+ µhDu = 0,

where we have used g(V1, Du) = V1u. Now, we take a covariant differentiation of
the equation (5.12) by ξ and use the relation (5.6), ∇ξξ = 0 to achieve

(5.13) κ{∇ξDu− ξ(ξu)ξ}+ µ{µhϕDu+ h(∇ξDu)} = 0.

By equations (5.5) and (5.8), we have

(5.14) δ∇ξD(λ− βr

2
) = (2nκα+ λ− βr

2
)ξ

and also

(5.15) δξ(ξu) = 2nκα+ (λ− βr

2
).

Making use of (5.14) and (5.15) in (5.13) and using ϕξ = 0, we have µ2hϕDu = 0.
Applying this to ϕ and using (2.1) we get µ2hDu = 0. By the operation of h and
the use of (2.1) and (5.3) we get

µ2(κ+ 1)(Du− (ξu)ξ) = 0.

For κ > −1, either (i) µ = 0 or (ii) µ ̸= 0.

Case (i). In this case, as κ > −1 it follows from (1.6) that κ = 0. Hence
R(V1, V2)ξ = 0 for any vector fields V1, V1 ∈ χ(M), and therefore M is the product
of a flat (n + 1)-dimensional manifold of negative constant curvature −4 (see [24,
Theorem 3.3]).

Case (ii). This case yieldsDu = (ξu)ξ. We differentiate this along with an arbitary
vector field V1 together with (2.1) to acquire

∇V1
Du = V1(ξu)ξ − (ξu)(ϕV1 − ϕhV1).

As g(∇V1
D(λ− βr

2 ), V2) = g(∇V2
D(λ− βr

2 ), V1), the last equation gives

V1(ξu)η(V2)− V2(ξu)η(V1) + (ξu)dη(V1, V2) = 0.

Replacing V1 by ϕV1 and V2 by ϕV2 and using ϕξ = 0 we find ξu = 0. We apply
dη ̸= 0 on M2n+1. Then, Du = 0, i.e., u is constant and consequently (5.8), (5.14)
and (5.15) yield Ricg = (λ − βr

2 )g = 2nκα, i.e., M2n+1 is an Einstein. This gives
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r = 2nκα(2n + 1). In addition Lemma 3 yields r = 2n{2(1 − n) + κα + nµ}.
Combining both we have

(5.16) nµ = 2(nκα+ n− 1).

Now, using (5.16) and Ricg = 2nκαg in (5.5) we get 2(n− 1) + µ = 0. Thus (1.6)

yields κ = 1−n2

n , a contradiciton. This finishes the proof. 2
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