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RIGIDITY CHARACTERIZATION OF

COMPACT RICCI SOLITONS

Fengjiang Li and Jian Zhou

Abstract. In this paper, we firstly define the Ricci mean value along

the gradient vector field of the Ricci potential function and show that it
is non-negative on a compact Ricci soliton. Furthermore a Ricci soliton

is Einstein if and only if its Ricci mean value is vanishing. Finally, we
obtain a compact Ricci soliton (Mn, g)(n ≥ 3) is Einstein if its Weyl

curvature tensor and the Kulkarni-Nomizu product of Ricci curvature are

orthogonal.

1. Introduction

The concept of Ricci solitons was introduced by Hamilton in mid 80,s. They
are natural generalizations of Einstein metrics. Ricci solitons also correspond
to self-similar solutions of Hamilton,s Ricci flow and often arise as limits of
dilations of singularities in the Ricci flow. They can be viewed as fixed points
of the Ricci flow, as a dynamical system, on the space of Riemannian met-
rics modulo diffeomorphisms and scalings. Ricci solitons are of interests to
physicists as well and are called quasi-Einstein metrics in physics literature.

A complete n-dimensional Riemannian manifold (Mn, g) is called a Ricci
soliton if there exists a smooth vector field X such that the Ricci tensor satisfies
the following equation

(1) Ric+
1

2
LXg = µg

for some constant µ, where Ric is the Ricci tensor of M and LX denotes the
Lie derivative operator along the vector field X. The Ricci soliton is said to
be shrinking, steady, and expanding accordingly as µ is positive, zero, and
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negative, respectively. If X is a gradient vector field, then we have a gradient
Ricci soliton, satisfying the equation

(2) Ric+Hess(f) = µg,

where Hess(f) denote the Hessian of f . The function f is called a potential
function of the gradient steady soliton. The case X = 0 (i.e., f being a constant
function) is an Einstein metric or is said to be trivial, and vice versa.

Many works have been directed at classifying the Ricci soliton, as it is an im-
portant problem in the theory of the Ricci flow. In [23], Perelman have proved
that every compact Ricci soliton is a gradient Ricci soliton. The classification
of gradient Ricci solitons has been a very interesting problem. For compact
expanding and steady gradient Ricci solitons, it is well-known that they must
be Einstein (see [8], [23]). The shrinking case is a little bit more complicated.
When n = 2, 3, it is known that compact shrinking Ricci solitons are Einstein
(see [15] and [18]).

In dimension 2 Hamilton [16] proved that the shrinking gradient Ricci soli-
tons with bounded curvature are S2, RP2, and R2 with constant curvature [14].
The two-dimensional case is special: Every shrinking compact two-dimensional
Ricci soliton is S2 or RP2 with the standard metric. This result was first proved
by Hamilton [16] with an argument using the Uniformization theorem which
can be strongly simplified by means of Kazdan-Warner identity (see [9]). In
[6], Chen, Lu and Tian found a simple proof independent by uniformization of
surfaces.

Ivey proved the first classification result in dimension 3 showing that com-
pact shrinking gradient solitons have constant positive curvature [18]. In the
noncompact case Perelman [23] has shown that the 3-dimensional shrinking
gradient Ricci solitons with bounded nonnegative sectional curvature are S3,
S2 × R, and R3 or quotients. Ni and Wallach [21] have given an alternative
approach to prove the classification of 3-dimensional shrinkers which extends to
higher dimensional manifolds with zero Weyl tensor, while every 3-manifold has
zero Weyl tensor. Their argument also requires non-negative Ricci curvature.
Also see Naber’s paper [20] for a different argument in the 3-dimensional case.
By using a different set of formulas they remove the non-negative curvature
assumption.

When n ≥ 4, there exist nontrivial compact gradient shrinking solitons.
Also, there exist complete noncompact Ricci solitons (steady, shrinking and
expanding) that are not Einstein (cf. [2] and [19]).

To characterize Ricci solitons, various rigidity results under appropriate cur-
vature pinching assumptions were proved. In [1], the result implies that gra-
dient Ricci solitons with positive curvature operator must be of constant cur-
vature. Specially, for the case of vanishing Weyl conformal curvature tensor,
there are many interesting results (cf. [3–5,11] and [24]).

In [3], they proved that a complete noncompact non-flat conformally flat
gradient steady Ricci soliton is the Bryant soliton up to scaling. In [21], they
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proved a classification result on gradient shrinking solitons with vanishing Weyl
curvature tensor which includes the rotationally symmetric ones, in high di-
mension. In [4], the author proved several identities on compact gradient Ricci
solitons. As an application of these identities, later, in [5] they obtain that
a compact gradient shrinking Ricci soliton, which is locally conformally flat,
must be Einstein. In [11], they obtain the same result.

One naturally asks how to know a compact gradient soliton is Einstein? In
this paper, a quantity will be defined to judge it, and the motivation comes
from the fact that Z. Guo [12] defined the Ricci mean value of a hypersurface
and obtained the gap theorem for the scalar curvature recently. Similarly, we
define the Ricci mean value of a gradient Ricci soliton as follows:

(3) δ =
1

nV

∫
M

Ric(∇f,∇f)dM,

where V is the volume of M and Ric(∇f,∇f) denotes the Ricci curvature
along the gradient vector ∇f . We obtain that δ is non-negative on a compact
gradient Ricci soliton. More importantly, a compact gradient Ricci soliton is
Einstein if and only if its Ricci mean value is vanishing. Explicitly, we prove
following results:

Theorem 1.1. Let (Mn, g)(n ≥ 2) be a compact Ricci soliton. Then

(4) δ ≥ 0.

Moreover, the equality sign holds if and only if M is trivial.

We recall that for two symmetric (0, 2)-tensorsA andB defined the Kulkarni-
Nomizu product as the (0, 4)-tensor

(5)
A ◦B(X,Y, Z,W ) =

1

2
[A(X,Z)B(Y,W ) +A(Y,W )B(X,Z)]

− 1

2
[A(X,W )B(Y,Z) +A(Y,Z)B(X,W )],

where X,Y, Z,W are smooth vector fields on M .
In this paper, we study compact Ricci solitons that its Weyl conformal cur-

vature tensor W and the Kulkarni-Nomizu product of Ricci curvature Ric◦Ric
are orthogonal, i.e.,

(6) 〈W,Ric ◦Ric〉 = 0.

Firstly, we compute the Laplacian of |Ric|2/R2, where |Ric|2 is the squared
length of the Ricci tensor of M , and then derive an algebraic lemma (Lemma
4.2) to estimate the formula. Finally applying with the strong maximum prin-
ciple (Lemma 2.4), we obtain the following theorem:

Theorem 1.2. Let (Mn, g)(n ≥ 3) be a compact Ricci soliton. If its Weyl con-
formal curvature tensor W and Ric ◦Ric are orthogonal, M must be Einstein.

Particularly, when the Weyl conformal curvature tensor vanishes, (6) holds
autometically. Hence we also have the result:
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Corollary 1.3. Let (Mn, g)(n ≥ 3) be a compact Ricci soliton with vanishing
Weyl conformal curvature tensor, and then M is Einstein.

Note that the Weyl conformal curvature tensor is identically zero for every
3-manifold, while the metric is called locally conformally flat when its Weyl
conformal curvature tensor vanishes in dimension n > 3. Hence, every com-
pact 3-dimensional Ricci soliton is Einstein. When n > 3, every compact
conformally flat Ricci soliton must be also Einstein.

We organize the paper as follows. In Section 2, we give some formulas and
notations for a Riemannian manifold and some fundamental formulas of Ricci
solitons by using the method of moving frames. In Section 3, we give the
properties of the Ricci mean value for a gradient Ricci soliton and complete
the proof of Theorem 1.1. In Section 4, we obtain some properties of Ricci
solitons and an algebraic lemma and prove Theorem 1.2.

2. Preliminaries

In this section, we first recall the some formulas and notations for a Rie-
mannian manifold by using the method of moving frames. Then we give some
fundamental formulas of Ricci solitons and an algebraic lemma to complete the
proof of the main theorem.

Let Mn(n ≥ 3) be an n-dimensional Riemannian manifold, e1, . . . , en be a
local orthonormal frame fields on Mn, and ω1, . . . , ωn be their dual 1-forms.
In this paper we make the following conventions on the range of indices:

1 ≤ i, j, k, . . . ≤ n,
and agree that repeated indices are summed over the respective ranges. Then
we can write the structure equations of Mn as follows:

(7) dωi = ωj ∧ ωji, ωij + ωji = 0,

(8) dωij = ωik ∧ ωkj −
1

2
Rijklωk ∧ ωl, Rijkl = −Rjikl,

where d is external differential operator on M , ωij is the Levi-Civita connection
form and Rijkl is the Riemannian curvature tensor of M . It is known that
Riemannian curvature tensor satisfies the following identities:

(9) Rijkl = −Rijlk, Rijkl = Rklij , Rijkl +Riklj +Riljk = 0.

Ricci tensor Rij and scalar curvature R are defined respectively by

(10) Rij :=
∑
k

Rikjk, R =
∑
i

Rii.

Let f be a smooth function on Mn, we define the covariant derivatives fi, fi,j ,
fi,jk as follows:

(11) fiωi := df, fi,jωj := dfi + fjωji,

(12) fi,jkωk := dfi,j + fk,jωki + fi,kωkj .
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We know that

(13) fi,j = fj,i, fi,jk − fi,kj = flRlijk.

Its gradient, Hessian and Laplacian are defined by the following formulas:

(14) ∇f := fiei, Hess(f) := fi,jωi ⊗ ωj , ∆f :=
∑
i

fi,i.

The covariant derivatives of tensors Rij and Rijkl are defined by the following
formulas:

(15) Rij,kωk := dRij +Rkjωki +Rikωkj ,

(16) Rij,klωl := dRij,k +Rlj,kωli +Ril,kωlj +Rij,lωlk,

(17) Rijkl,mωm := dRijkl +Rmjklωmi +Rimklωmj +Rijmlωmk +Rijkmωml.

By exterior differentiation of (8), one can get the second Bianchi identity

(18) Rijkl,m +Rijlm,k +Rijmk,l = 0.

From (10), (15) and (18), we have

(19) Rij,k = Rik,j = −
∑
l

Rlijk,l,

and so

(20)
∑
j

Rji,j =
1

2
Ri.

We define the Schouten tensor S = Sijωi ⊗ ωj , where

(21) Sij := Rij −
1

2(n− 1)
Rδij ,

then Sij = Sji. The tensor

(22) Cijkl := Rijkl −
1

n− 2
(Sikδjl + Sjlδik − Silδjk − Sjkδil)

is called Weyl conformal curvature tensor which does not change under con-
formal transformation of the metric. The Weyl conformal curvature tensor is
identically zero for every 3-dimensional manifold. In dimension n ≥ 4, when its
Weyl conformal curvature tensor vanishes, the metric called conformally flat is
locally conformally equivalent to a flat metric.

Let

(23) φij := Rij −
1

2
Rδij ,

and we get φ = φijωi ⊗ ωj is a symmetric tensor defined on M . We introduce
an operator � associated to φ acting on any function f ∈ C2(M) by

(24) �f = φijfi,j .
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Then, in [7] Cheng and Yau prove that � is self-adjoint relative to the L2 inner
product of M , that is

(25)

∫
M

(h�f)dM =

∫
M

(f�h)dM

for any C2-functions f and h.
Now, let (Mn, g) be a gradient compact Ricci soliton and the soliton equa-

tion(2) can be written as

(26) Rij + fi,j = µδij .

We will give some well-known facts of gradient Ricci solitons.

Lemma 2.1 ([11]). Suppose that (Mn, g) is a gradient Ricci soliton satisfying
(26). Then the following formulas hold,

(27) R+ ∆f = nµ, Rij,k + fi,jk = 0, Ri + (∆f)i = 0,

(28) ∆Rij = Rij,kfk + 2µRij − 2RklRikjl,

(29) ∆R = 〈∇R,∇f〉+ 2µR− 2|Ric|2,
where ∆Rij =

∑
k

Rij,kk, |Ric|2 =
∑
i,j

R2
ij .

Lemma 2.2 ([11]). Let (Mn, g) be a compact Ricci soliton. If its scalar cur-
vature R is nonconstant, then it must be positive everywhere.

In this paper, we also need the well-known algebraic lemma which was first
used by Okumura and the strong maximum principle.

Lemma 2.3 ([22]). Let αi, i = 1, . . . , n, be real numbers such that
∑

i αi = 0,∑
i α

2
i = constant ≥ 0. Then

(30) |
∑
i

α3
i | ≤

n− 2√
n(n− 1)

(
∑
i

α2
i )

3
2 .

Moreover, the equality holds in (30) if and only if (n − 1) of the αi are equal
or αi = 0 for all i.

Lemma 2.4 ([10], [13], [17]). A nonconstant C∞ function f on a Riemannian
manifold (M, g) without boundary such that ∆f ≥ V (f) for some C∞ vector
field V cannot assume a maximum value anywhere in M .

3. The Ricci mean value of a gradient Ricci soliton

In this section, we mainly investigate the Ricci mean value along the gradient
vector field for a compact gradient Ricci soliton which is defined in (2).

Lemma 3.1. Suppose that (Mn, g) is a compact Ricci soliton. Then

(31)

∫
M

(
(1− n

2
)nµ2 +

1

2
R2 − |Ric|2

)
dM = 0.
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Proof. Taking the function h = 1 in (25), then

(32)

∫
M

(Rij −
1

2
Rδi,j)fi,jdM = 0

From (26), we have

(33) (Rij −
1

2
Rδij)fi,j = (1− n

2
)µR+

1

2
R2 − |Ric|2.

We can easily obtain (31) by putting the first equation of (27) and (33) into
(32) because M is compact. �

Proof of Theorem 1.1. Calculating the Laplacian of ∆(|∇f |2) and using the
Ricci identities, it follows that

(34)
1

2
∆(|∇f |2) =

∑
i,j

f2i,j + fi(∆f)i +Rijfifj .

From (20) and (27), we have

(35)
1

2
(∆f)i +Rijfj = 0.

Using (26) and (27),

(36)
∑
i,j

f2i,j = |Ric|2 − nµ2 + 2µ∆f.

Plugging (35) and (36) into (34) implies that

(37)
1

2
∆(|∇f |2) = |Ric|2 − nµ2 + 2µ∆f −Rijfifj .

Since M is compact, noting (3), we obtain

(38) δ =
1

nV

∫
M

[|Ric|2 − nµ2]dM.

Combining with (27) and (31), then

(39) δ =
1

2nV

∫
M

(R− nµ)2dM.

It follows that δ is non-negative, and the equality sign holds if and only if
R = nµ which implies M is trivial. In fact, from the first equation of (27), M
is Einstein if the scalar curvature R is constant. This is the proof of Theorem
1.1. �

Remark 3.2. For a given compact Riemannian manifold (Mn, g)(n ≥ 3) and a
real number µ, if it is a gradient Ricci soliton, we have a non-empty set

(40) RS = {f ∈ C2(M) : Ric+Hess(f) = µg}.
Functional δ : RS → R which is defined by (3) needs to satisfy

(41)
1

n
min |Ric(g)|2 − µ2 ≤ δ(f) ≤ 1

n
max |Ric(g)|2 − µ2
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from (38) and Theorem 1.1, where f ∈ RS. Hence we can define two numbers
α(g) and β(g) as follows:

(42) α(g) := inf{δ(f) : f ∈ RS}, β(g) := sup{δ(f) : f ∈ RS}.

Our inequality can be written as follows:

(43)
1

n
min |Ric(g)|2 − µ2 ≤ α(g) ≤ β(g) ≤ 1

n
max |Ric(g)|2 − µ2.

4. Compact Ricci solitons under the Weyl curvature tensor
condition

In this section, we will give some properties and complete the proof of The-
orem 1.2. Let M be a compact Ricci soliton. Since every compact Ricci soliton
is a gradient Ricci soliton by means of Perelman work, there exists a poten-
tial function f such that the soliton equation (26) holds. Hence we next only
need to deal with the case of shrinking (µ > 0) gradient Ricci solitons, because
compact expanding and steady gradient Ricci solitons must be Einstein. M is
trivial if the scalar curvature R is constant. So we only need to consider the
case which R is nonconstant. In this case, it must be positive everywhere from
lemma 2.2. Hence we can consider the function |Ric|2/R2.

Lemma 4.1. Suppose that (Mn, g) be a gradient Ricci soliton. Then

(44)

∆
|Ric|2

R2
= 〈∇|Ric|

2

R2
,∇f + 2

1

R
∇R− 2

R2
∇R2〉

+
4

R3

(
|Ric|4 − 2n− 1

(n− 1)(n− 2)
R2|Ric|2

+
R4

(n− 1)(n− 2)
+

2R

n− 2
tr(Ric)3

)
+ 2

∑
i,j,k

∣∣∣ 1

R
Rij,k −

1

R2
RijRk

∣∣∣2 − 4

R2
RijRklCikjl.

Proof. By the definition of ∆, we compute that

(45) ∆
|Ric|2

R2
=

1

R4

(
R2∆|Ric|2 − |Ric|2∆R2

)
+ 〈∇|Ric|

2

R2
,− 2

R2
∇R2〉.

Next, we deal with the first item of the right side of (45). Calculating the
Laplacian of R2 and |Ric|2 respectively, using (28) and (29), we know

(46) ∆R2 = 2|∇R|2 + 2R〈∇R,∇f〉+ 4µR2 − 4R|Ric|2,

(47) ∆|Ric|2 = 2
∑
i,j,k

R2
ij,k + 2RijRij,kfk + 4µ|Ric|2 − 4RijRklRijkl.
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Substituting (46) and (47) into the first item of the right side of (45), then

(48)

1

R4

(
R2∆|Ric|2 − |Ric|2∆R2

)
=

2

R2

∑
i,j,k

R2
ij,k −

2

R4
|Ric|2|∇R|2 +

2

R2
RijRij,kfk

− 2

R3
|Ric|2〈∇R,∇f〉+

4

R3

(
|Ric|4 −RRijRklRikjl

)
.

Noticing

(49)
( |Ric|2

R2

)
k

=
2

R2
RijRij,k −

2

R3
|Ric|2Rk,

we have

(50)

∆
|Ric|2

R2
=

2

R2

∑
i,j,k

R2
ij,k −

2

R4
|Ric|2|∇R|2

+
4

R3

(
|Ric|4 −RRijRklRikjl

)
+ 〈∇|Ric|

2

R2
,∇f − 2

R2
∇R2〉.

On the other hand, one can work out the following equation

(51)

∑
i,j,k

∣∣∣ 1

R
Rij,k −

1

R2
RijRk

∣∣∣2
=

1

R2

∑
i,j,k

R2
ij,k −

1

R4
|Ric|2|∇R|2 − 1

R
〈∇|Ric|

2

R2
,∇R〉.

By the use of (22), we compute that

(52)
RijRklRikjl = − 2n− 1

(n− 1)(n− 2)
R|Ric|2 +

R3

(n− 1)(n− 2)

+
2

n− 2
tr(Ric)3 +RijRklCikjl.

Therefore, we can easily obtain (44) by putting (51) and (52) into (50). �

In this paper, we also need the following algebraic lemma:

Lemma 4.2. Let A = (aij) be a symmetric (n×n)-matrix. When n ≥ 3, then
(53)

|A|4− 2n− 1

(n− 1)(n− 2)
(trA)2|A|2+

1

(n− 1)(n− 2)
(trA)4+

2

n− 2
(trA)(trA3) ≥ 0,

where |A|2 =
∑
i,j

a2ij, trA =
∑
i

aii. Moreover the equality holds for the matrix

A if and only if A can be transformed simultaneously by an orthogonal matrix
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into scalar multiples of the unit matrix In or Ã, where

Ã =
( 0 0

0 In−1

)
,

and Ik is the (k × k) unit matrix.

Proof. We may assume that A is diagonal and denote by a1, . . . , an the diagonal
entries in A. By a simple calculation we obtain that the left side of (53) is
written by F (a1, . . . , an), where

(54)

F (a1, . . . , an) =
(∑

i

a2i

)2
− 2n− 1

(n− 1)(n− 2)

(∑
i

a2i

)(∑
i

ai

)2
+

1

(n− 1)(n− 2)

(∑
i

ai

)4
+

2

n− 2

(∑
i

ai

)(∑
i

a3i

)
.

There are (n+ 2) real numbers s, t, α1, . . . , αn, such that

(55) ai = t+ sαi, i = 1, , . . . , n,

where α1, . . . , αn satisfy the following equations,

(56)
∑
i

αi = 0,
∑
i

α2
i = 1.

When t = 0, then ai = sαi and F (a1, . . . , an) = s4F (α1, . . . , αn). Noting
(56), it is straightforward to get F (α1, . . . , αn) = 1. Consequently, in this case,
F (a1, . . . , an) = s4 ≥ 0, and the equality holds if and only if A = 0n×n.

On the other hand, if t 6= 0, let

(57) ai = t(1 + xαi), i = 1, . . . , n,

where x = s
t , and then

(58) F (a1, . . . , an) = t4F (1 + xα1, . . . , 1 + xαn)

from (54) and (55). Noticing (53), from (51) and (54), we obtain

(59) F (1 + xα1, . . . , 1 + xαn) = x2
[
x2 +

2n

n− 2

(∑
i

α3
i

)
x+

n

n− 1

]
.

Let

(60) G(x) = x2 +
2n

n− 2

(∑
i

α3
i

)
x+

n

n− 1

and it can be seen as a quadratic function about x. Therefore from (56) and
Lemma 2.3, we can get its discriminant

(61) ∆ =
4n2

(n− 2)2

(∑
i

α3
i

)2
− 4n

n− 1
≤ 0.



RIGIDITY CHARACTERIZATION OF COMPACT RICCI SOLITONS 1485

So G(x) is non-negative. Moreover, it vanishes if and only if (n− 1) of the αi

are equal since
∑
i

α2
i = 1, that is

(62) α1 = ∓
√
n− 1

n
, α2 = · · · = αn = ±

√
1

n(n− 1)
.

Therefore we can easily obtain F (a1, . . . , an) ≥ 0 by using (58), (59) and (60),
and the equality holds if and only if a1 = · · · = an = t or

(63) a1 = 0, a2 = · · · = an = t
n

n− 1
.

Hence, in this case, the equality of (53) holds if and only if A can be transformed

simultaneously by an orthogonal matrix into scalar multiples of In or Ã. �

Proof of Theorem 1.2. Now, let (Mn, g)(n ≥ 3) be a compact Ricci soliton
whose Weyl conformal curvature tensor W and Ric ◦ Ric are orthogonal. By
(5) the definition of Ric ◦Ric and the properties of Weyl curvature tensor W ,
we can get that the two tensors W and Ric ◦Ric are orthogonal if and only if

(64)
∑
ijkl

RikRjlCijkl = 0.

Combining Lemmas 4.1 and 4.2, then

(65) ∆
|Ric|2

R2
≥ 〈∇|Ric|

2

R2
,∇f + 2

1

R
∇R− 2

R2
∇R2〉.

By making use of the strong maximum principle for the above formula, then

(66)
|Ric|2

R2
= c,

where c is constant. Moreover, from (66) and (53) we get

(67) |Ric|4 − 2n− 1

(n− 1)(n− 2)
R2|Ric|2 +

R4

(n− 1)(n− 2)
+

2R

n− 2
tr(Ric)3 = 0,

(68)
∑
i,j,k

∣∣∣ 1

R
Rij,k −

1

R2
RijRk

∣∣∣2 = 0.

The equality (67) implies that (Rij) can be transformed simultaneously by an

orthogonal matrix into scalar multiples of In or Ã from Lemma 4.2. Therefore,
we consider the following two cases separately. Now, we can choose a local
orthonormal frames field on Mn such that

(69) Rij = λiδij ,

where i is not summing index.
Case 1: λ1 = · · · = λn, and then M is Einstein.
Case 2:

(70) λ1 = 0, λ2 = · · · = λn = λ 6= 0,
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and then

(71) R = (n− 1)λ, |Ric|2 = (n− 1)λ2.

Putting (71) into (66), we get

(72) c =
1

n− 1
.

When n > 3, (68) yields

(73) Rij,k =
1

R
RijRk

for any i, j, k. From (20) and (73), then

(74)
1

2
Rj =

λj
(n− 1)λ

Rj .

When j = 1 in the above equation, as λ1 = 0, we can have R1 = 0. When
j ≥ 2, then λj = λ and Rj = 0. Therefore the scalar curvature R is constant.

When n = 3, c = 1
2 in M since c is constant. From (66) and Lemma 3.1, we

can obtain

(75) (1− n

2
)nµ2V = (c− 1

2
)

∫
M

R2dM,

where V is the volume of M . Hence, the left side of (75) is negative and its
right side is vanishing for n = 3, which is a contradiction.

Consequently, we complete the proof of Theorem 1.2. �

Remark 4.3. Let (Mn, g)(n ≥ 3) be a Riemannian manifold, and Rij and R are
denoted the Ricci tensor and scalar curvature respectively. If R 6= 0 everywhere
in M , let

(76) Tij :=
1

R
Rij ,

and then T = Tijωi ⊗ ωj is a symmetric tensor defined on M . The equation
(68) is equivalent that the tensor T is parallel. In Lemma 3.1 of [10], Derdzinski
pointed out that if the tensor T is parallel, then R is constant. In fact this
result is not exact. For example, let M2 be a 2-dimension Riemannian manifold
with nonconstant curvature, and Γ be a 1-dimension manifold. Let M3 is the
Riemannian product manifold Γ×M2, and then the tensor T of M3 is parallel,
but its the scalar curvature is not constant.
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