• 제목/요약/키워드: fuzzy similarity

검색결과 248건 처리시간 0.026초

A New Class of Similarity Measures for Fuzzy Sets

  • Omran Saleh;Hassaballah M.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제6권2호
    • /
    • pp.100-104
    • /
    • 2006
  • Fuzzy techniques can be applied in many domains of computer vision community. The definition of an adequate similarity measure for measuring the similarity between fuzzy sets is of great importance in the field of image processing, image retrieval and pattern recognition. This paper proposes a new class of the similarity measures. The properties, sensitivity and effectiveness of the proposed measures are investigated and tested on real data. Experimental results show that these similarity measures can provide a useful way for measuring the similarity between fuzzy sets.

Similarity Measure Construction with Fuzzy Entropy and Distance Measure

  • Lee Sang-Hyuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권4호
    • /
    • pp.367-371
    • /
    • 2005
  • The similarity measure is derived using fuzzy entropy and distance measure. By the elations of fuzzy entropy, distance measure, and similarity measure, we first obtain the fuzzy entropy. And with both fuzzy entropy and distance measure, similarity measure is obtained., We verify that the proposed measure become the similarity measure.

Similarity Analysis Between Fuzzy Set and Crisp Set

  • Park, Hyun-Jeong;Lee, Sang-Hyuk.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권4호
    • /
    • pp.295-300
    • /
    • 2007
  • The similarity analysis for fuzzy set pair or crisp set pair are carried out. The similarity measure that is based on distance measure is derived and proved. The proposed similarity measure is considered with the help of analysis for uncertainty or certainty part of the membership functions. The usefulness of proposed similarity is verified through the computation of similarity between fuzzy set and crisp set or fuzzy set and fuzzy set. Our results are also compared with those of previous similarity measure which is based on fuzzy number.

Evaluation of certainty and uncertainty for Intuitionistic Fuzzy Sets

  • Wang, Hong-Mei;Lee, Sang-Hyuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권4호
    • /
    • pp.259-262
    • /
    • 2010
  • Study about fuzzy entropy and similarity measure on intuitionistic fuzzy sets (IFSs) were proposed, and analyzed. Unlike fuzzy set, IFSs contains uncertainty named hesistancy, which is contained in fuzzy membership function itself. Hence, designing fuzzy entropy is not easy because of ununified entropy definition. By considering different fuzzy entropy definitions, fuzzy entropy is designed and discussed their relation. Similarity measure was also presented and verified its usefulness to evaluate degree of similarity.

Fuzzy similarity measure in Hypergraph

  • Lee, H.-Kwang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.549-551
    • /
    • 1998
  • For a fuzzy system modeled by a fuzzy hypergraph, two fuzzy similarity measures are proposed : one for the fuzzy similarity between fuzzy sets and the other between elements in fuzzy sets. The propose measures can represent the realistic similarities which can not be given by the existing measures. With and example, it is shown that it can be used in the behavior analysis in an organization.

  • PDF

Information Quantification Application to Management with Fuzzy Entropy and Similarity Measure

  • Wang, Hong-Mei;Lee, Sang-Hyuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권4호
    • /
    • pp.275-280
    • /
    • 2010
  • Verification of efficiency in data management fuzzy entropy and similarity measure were discussed and verified by applying reliable data selection problem and numerical data similarity evaluation. In order to calculate the certainty or uncertainty fuzzy entropy and similarity measure are designed and proved. Designed fuzzy entropy and similarity are considered as dissimilarity measure and similarity measure, and the relation between two measures are explained through graphical illustration. Obtained measures are useful to the application of decision theory and mutual information analysis problem. Extension of data quantification results based on the proposed measures are applicable to the decision making and fuzzy game theory.

Mutual Information Analysis with Similarity Measure

  • Wang, Hong-Mei;Lee, Sang-Hyuk
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권3호
    • /
    • pp.218-223
    • /
    • 2010
  • Discussion and analysis about relative mutual information has been carried out through fuzzy entropy and similarity measure. Fuzzy relative mutual information measure (FRIM) plays an important part as a measure of information shared between two fuzzy pattern vectors. This FRIM is analyzed and explained through similarity measure between two fuzzy sets. Furthermore, comparison between two measures is also carried out.

Operations on the Similarity Measures of Fuzzy Sets

  • Omran, Saleh;Hassaballah, M.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제7권3호
    • /
    • pp.205-208
    • /
    • 2007
  • Measuring the similarity between fuzzy sets plays a vital role in several fields. However, none of all well-known similarity measure methods is all-powerful, and all have the localization of its usage. This paper defines some operations on the similarity measures of fuzzy sets such as summation and multiplication of two similarity measures. Also, these operations will be generalized to any number of similarity measures. These operations will be very useful especially in the field of computer vision, and data retrieval because these fields need to combine and find some relations between similarity measures.

유사측도에 기반한 퍼지 엔트로피구성 (Fuzzy Entropy Construction based on Similarity Measure)

  • Park, Wook-Je;Park, Hyun-Jeong;Lee, Sang-H
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.366-369
    • /
    • 2007
  • In this paper we derived fuzzy entropy that is based on similarity measure. Similarity measure represents the degree of similarity between two informations, those informations characteristics are not important. First we construct similarity measure between two informations, and derived entropy functions with obtained similarity measure. Obtained entropy is verified with proof. With the help of one-to-one similarity is also obtained through distance measure, this similarity measure is also proved in our paper.

  • PDF

비 컨벡스 퍼지 소속함수에 대한 유사측도구성 (Similarity Measure Construction for Non-Convex Fuzzy Membership Function)

  • Park, Hyun-Jeong;Kim, Sung-Shin;Lee, Sang-H
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.199-202
    • /
    • 2007
  • The similarity measure is constructed for non-convex fuzzy membership function using well known Hamming distance measure. Comparison with convex fuzzy membership function is carried out, furthermore characteristic analysis for non-convex function are also illustrated. Proposed similarity measure is proved and the usefulness is verified through example. In example, usefulness of proposed similarity is pointed out.

  • PDF