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Abstract

The similarity measure is derived using fuzzy entropy and distance measure. By the relations of fuzzy entropy, distance
measure, and similarity measure, we first obtain the fuzzy entropy. And with both fuzzy entropy and distance measure,
similarity measure is obtained. We verify that the proposed measure become the similarity measure.
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1. Introduction

Similarity between two sets can be applied to the pattern
classification field. Similarity measure has been noticed as the
complementary meaning of the distance measure, i,
s+d=1, where d and s are distance and similarity measure
respectively. In the above, 1 means the sum of similarity and
dissimilarity. In the previous literatures, fuzzy entropy of a
fuzzy set represents a measure of fuzziness of the fuzzy
set[1-7]. Hence, well-defined distance measure represents the
fuzzy entropy. By the summing relation, we can notice that
the similarity measure can be illustrated through distance
measure and fuzzy entropy function. Well known-Hamming
distance is usually used to construct fuzzy entropy, so we
compose the fuzzy entropy function through Hamming dis-
tance measure. Using the relation of distance measure and
stmilarity measure, we construct and prove the similarity
measure with fuzzy entropy, and similarity measure is also
constructed through distance measure. In the next section; the
axiomatic definitions of entropy, distance measure and sim-
ilarity measure of fuzzy sets are introduced and fuzzy entropy
is constructed through distance measure. In Section 3, sim-
ilarity measures are constructed and proved through fuzzy en-
tropy and the distance measure. Used distance measure is pro-
posed by considering support average. Conclusions are fol-
lowed in Section 4.

Notations: Through out this paper, R¥ = [0, ), F(X),
and P(X) represent the set of all fuzzy sets and crisp sets
on the universal set X respectiveiy. Ha (I) is the membership
function of A € F(X), and the fuzzy set A, we use A to
express the complement of A, je. Hac(T)=1—p4(x),
Yz & X. For fuzzy sets A and B, AU B, the union of A
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and B is defined as Haup(z)=maz(u,(z), pp(z)),
ANB, the intersection of 4 and B is
pans (z) =min(pa(z), ps (). A fuzzy set A is called
a sharpening of A, if Ha(T) = pa(T)
ta(z) = 1/2 and pa(z) < pg(z)
pa(2z) <1/2. For any crisp sets D, Anear and Apr of fuz-
zy set A are defined as

defined as

when

when
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2. Preliminary

In this section, we introduce some preliminary results and
also discuss induced results. Liu suggested three axiomatic
definitions of fuzzy entropy, distance measure and similarity
measure as follows [4]. By these definitions, we can propose
entropy, and compare it with the result of Liu.

2.1 Some definitions of fuzzy entropy

In this subsection, we introduce some preliminary results
about fuzzy entropy, distance measure, similarity measure, and
related properties.
Definition 2.1 (Liu, 1992) A real function e: F(X)—>R™ or
e: P(X)—>R" is called an entropy on F(X) or P(X) if
€ has the following properties:

(E1) e(D)=0,vD e P(X)

(E2) e([1/2]) =maz,c pxye(4)

(E3) e(A”) < e(A), for any sharpening A" of A
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(E4) e(A)=¢e(A°), VA € F(X).
where [1/2] is the fuzzy set in which the value of the
membership function is 1/2.

Definition 2.2 [Liu, 1992] A real function d: FP>R™ is
called a distance measure on F(X) or P(X) if d satisfies
the following properties:

(D1) ¢(4,BY=d(B,A),VA,B € F(X)

D2) d(A, A)=0, VA € F(X)

(D3) d(D, D) =mazypcr d(A,B), VD € P(X)

DOHVA, B CeFX) if AcBcC,
d(A,B) < d(A,C) and d(B, C) < d(A4,C).

then

Definition 2.3 (Liu, 1992) A real function $: F°—>R ™ or
P> R* is called a similarity measure, if $ has the follow-
ing properties:

(S s(4,B)=s(B,A),VA,B € F(X)

(82) s(4,A°) =0 VA € F(X)

(83) (D, D) =mazype rs(A,B), VA, B € F(X)

849 VABCeFX), if AcBcC,
S(A, B) > S(A, C) and S(B, C) > S(A, C)

then

Liu also pointed out that there is an one-to-one relation be-
tween all distance measures and all similarity measures,
d+s =1, Fuzzy normal similarity measure on F is also ob-
tained by the division of MaXg pe pS(C, D). If We divide
universal set X into two parts D and D° in P(X), then the
fuzziness of fuzzy set A be the sum of the fuzziness of
AND and ANDC. By this idea, following definition is
followed.

Definition 2.4. (Fan and Xie, 1999) Let € be an entropy on
F(X). Then for any 4 € F(X),

e(A)=e(AND) +e(AND*)
is d-entropy on F(X).
Definition 2.5. (Fan and Xie, 1999) Let d be a distance
measure on F(X). Then for any 4,B € F(X), and
D € P(X),
d(A,B)=d(AND,BND)+d(AND,BND*)
be the o-distance measure on F(X),

Definition 2.6. (Fan and Xie) Let S be a similarity measure
on F(X). Then for any A,B € F(X), and D € P(X),
s(A,B)=s(AND,BUD*)+s(AND‘BUD)

be the O-similarity measure on F(X).

From definition 2.4-6, we can focus interesting area of uni-
versal set and extend the theory of entropy, distance measure
and similarity measure of fuzzy sets. Fan and Xie derived new
entropy via defined entropy, which is introduces by
e'= 6/(2 —e), where € is an entropy on F(X).
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2.2 Fuzzy entropy with distance measure

In this section, we propose entropy that is induced by the
distance measure. Among distance measures, Hamming dis-
tance is commonly used O-distance measure between fuzzy
sets A and B,

d(4, B) = £ 1 ua(e) —una)

where X = {z1, T3, - In}, | k | is the absolute value of

k. Next Proposition shows that the distance relation of be-
tween fuzzy set and crisp sets.

Proposition 2.1 (Fan and Xie, 1999). Let d be a O-distance
measure on F(X), then

(1) d(A} Anear) = d(A*; Anem‘)

(ii) d(A: Afar) <d (A*: Afdf)-

Fan, Ma and Xie proposed the following theorem [7].
Theorem 2.1 (Fan, Ma, and Xie, 2001) Let @ be a 0-distance
measure on F (X ), if d satisfies

() d(5D,0])=d(5D, D), ¥D e P(X),

(i) d(A°, B°Y=d (4, B),A,Be F(X),

then C(A) =D(A; Anear)+1 _d(A: Afar) is a fUZZy
entropy.

Now we propose another fuzzy entropy induced by distance
measure which is different from Theorem 3.1 of Fan, Ma and

Xie [7]. Proposed entropy needs only Avear crisp set, and it
has the advantage in computation of entropy.

Theorem 2.2 Let d be a o-distance measure on F(X); if d
satisfies

d(A°,B°Y=d(A,B),A,B € F(X),
then
e(4) =2d((ANAuq), [1]) +2d((AU A,oer), [0])
-2 (3)
is a fuzzy entropy.

Proofs of (3) are satisfied if (3) satisfy the Definition 2.1,
so it is illustrated in [9]. Theorem 2.2 uses only Avear crisp
set, hence we can consider another entropy. Which considers
only A far, and it has more compact form than Theorem 2.2.

Theorem 23 Let @ be a o-distance measure on F(X); if d
satisfies

d(A°,B°)=d(A,B),A,B € F(X),
then
e(A) =2d((ANAy ), [0])+2d((AU AL ), [1]) @

is a fuzzy entropy.

In a similar way we can prove from (El) to (E4) of
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Definition 2.1, it is also found in [9].

Proposed entropies Theorem 2.2 and 2.3 have some advan-
tages to the Liu's, they don't need assumption (i) of Theorem
2.1 to prove (3) and (4). Furthermore (3) and (4) use only
one crisp sets Aner and A pr, respectively. Later we check
the proposed entropy of Theorem 2.2 and 2.3 are the O
entropy on F(X) for any A€ F(X), satisfying
e(A)=e(AND)+e(AND). Next, we apply Theorem
2.2 and 2.3 to detect reliable phase current among the 3-phas-
es faulted induction motor. Proposed fuzzy entropies are more
succinct than those of Fan et.al's, and they need easier as-
sumptions than previous results.

3. Derivation of Similarity Measure

We obtain the fuzzy entropy with the distance measure in
previous section. Generally, fuzzy entropy is expressed
through distance measure, ie., €(4) =e(d(A)). In our re-
sult, entropy is represented distance measure itself,
e(A)=d(A). Hence, by the result of Liu's,

d(A)+s(4)=1 ©)

we modify the similarity measure as S(A) =1—e(A),
that means fuzzy set A matches to the crisp set Aneor nearly

as $(A) approaches to 0. We illustrate the similarity measure
with the entropy function in subsection 3.1 and the similarity
measure construction using the distance measure in the sub-
section 3.2.

3.1 Similarity measure using the entropy function

We propose the similarity measure in the following
theorems. Theorem 3.1 is obtained by considering Theorem
3.2

Theorem 3.1 For fuzzy set A € F(X), if d satisfies dis-

tance measure, then
s(4, A, o) = 4—2d((AN Ay,
—2d((AUA

1])
0})

is the similarity measure between fuzzy set A and crisp set
Anear.

[
[ (7)

near)’

proof. We prove that the eq. (7) satisfies the Definition 2.3.
(S1) means the commutativity of set A and Apear, hence it is
clear from (7) itself. From (S2), s(A, A°) =0 is shown as

s(A, A%) =4—2d((ANA°),[1]) —2d ((AUA°),[0])
=4-2d([0],[1])—24d([1],{0])
For all A, B € F(X), inequality of (S3) is proved by

s(A, B)=4-2d((ANB),[1])—2d((AU B), [0])
< 4-2d((DND),[1])—2d((DUD),[0])

=s(D,D).

Inequality is satisfied from
d((ANB),[1]) 2 d((DND),[1]) and
d((AUB),[0]) = d((DUD),[0]).

Finally, (S4) is VA, B,C e F(X), Ac Bc C,

s(A, B)=4—2d((ANB),[1])—-2d((AU B),[0])
—4—2d(A,[1])—2d(B,[0))
=4—2d(A,{1])—2d(C,[0])
=3(4,0C)

also

s(B,C)=4—-2d((BNC),[1])—2d((BU C),[0])
=4-2d(B,[1])—2d(C,[0])
=4—-2d(A,[1]))=2d(C,[0])
=3(A,C)

is  satisfied. Inequality is also  satisfied with
d(B’ [OD = d(C: [0]) and d(B) [1]) = d(A’[l]).

Therefore proposed similarity measure (7) satisfy Definition
2.3. Similarly, we propose another similarity measure in the

following theorem.

Theorem 3.2 For fuzzy set A € F(X) and distance measure
d

S(A7 A;é ar) = 2_2d((AmAchear)’ [0])
-Zd((AUAZear)J [1 ])

is the similarity measure of fuzzy set A and crisp set

A

near.

proof. Proofs are shown similarly as Theorem 3.1.
Commutativity of (S1) is clear from (8). To show the property
of (S2),
s(4, 4°) =2 24((AN (4°)),[0))
—2d((AU (A°)),[1])
=2-2(d(A,[0])+d(4,[1])
=2-2-:1=0

is clear. (S3) is clear from the relation

s(A,B)y=2-2d((ANB°),[0))—2d((AU B°),[1])
< 2-2d((DND%),[0})—24((Du D), [1])
=s(D,D),
where the inequality is proved by
d((ANF),[0]) =z d((DND°),[0]) and
d((AUB), [1]) 2 d((DU D), [1]).

Finally, VA,B, C € F(X) and A C BC C imply

s(A, B)=2—2d((AN B),[0])

—2d((AUB"),[1])
=2-2d([0],[0])—2d ((AU B*),[1])
>2-2d(ANC5[0])—2d(4U €, [1))
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=2-2d([0],[0])—2d (AU C°,[1])
=3s(4,0).

Also

s(B,C)=2—2d((BNC*),[0])

—24((BUC®),[1])

2-2d([0], [0])— 2d (BU €°), [1])
=2—2d(ANC5[0])—2d(AU C°,[1])
=2-—2d([0],[0])—2d (AU C*,[1])
=s(4,C)

is satisfied with

d((AUB),[1]) =2 d((AUC*°),[1]) and

d((BUC?),[1]) =z d((AUC"),[1]).

We have proposed the similarity measure that are induced
from fuzzy entropy. Those fuzzy entropy is also induced from
distance measure. Hence to obtain more implicit result, we
consider distance measure directly. In the following subsection,
we suggest similarity measure which is constructed using dis-
tance measure.

3.2 Similarity measure using distance measure

We have represented the relation s(A) =1—d(A) in
(6), that means the sum of similarity measure and distance
measure is constant. Hence, we solve the similarity measure
directly from distance measure in this subsection. To obtain
the similarity, proper distance measure is needed. First, we

n
consider the Hamming distance d(4, B) = -17;2 Iy (2;)
i=1

—pp ()] . By the relation of (6),
s(A,B)=1—d(A, B)

LR SRS ST
t=1

is the similarity measure? We check the definition (S1) to
(S4). (81) is clear from the eq. (9). (S2) and (S3) are also ob-
tained from (D3) and (D2) of definition 2.2. Finally, (S4) is
proved with the help of (D4). Naturally we conclude that if
the distance measure is constructed properly, then the sim-
ilarity measure can be obtained. Now we consider the mem-
bership functions typel and 2 in figure 1 and 2. In the Fig. 1

and 2, area between ¢, and pp are the same, value of

Hamming distance of Fig. 1 and 2 are same. Then which case
is more similar ?

/"x

Fig.] Membership functions type 1

370

1
y:
u
0— >
X
Fig. 2 Membership functions type 2
Consider the function
1 n
d(A,B)= 72 [ palz)— pp(z)]
i=1
+ | support, (z;) — supportp (z:)] (10)

1 n
where support, () = 72 |z|l, ;€ A and Supports
i=1

1 n
(z) = g2| %l , % € B are the average values of support.
=1

In this case, the first part of (10) is the Hamming distance,
hence the value of Fig. 1 and Fig. 2 are the same. However
the last part of (10) represents the difference of average
support. Now we check whether the eq. (10) satisfy the dis-
tance measure definition or not. For (D1), commutativity is
clear from (10). d(A, A) =0 is also clear, and the first part
of distance between D and D ¢ represents the sum 1. (D4) is
clear because Fig. 2 has similar average value compare to Fig.
1. Eq. (10) is the distance measure, thus we can propose sim-
ilarity measure as

$(4,B) = 1= 233 | ua (@) = (@)

— | supporty (z;) — supportp(z;)| . (1D
proof of (11). Proof is similar to theorem 3.1 and 2, commu-
tativity of (S1) is proved by (11). (S2) is also proved by
support, (z;) = supportg(z;). Also d(D, D)=0, hence
s(D,Dy=1 is proved. (S4) is finally proved by the (D4).
Proof verify that eq. (11) represent similarity measure.

4. Conclusions

We introduce the distance measure, similarity measure and
fuzzy entropy, fuzzy entropy can be represented by the func-
tion of distance measure. By the one to one correspondence of
distance measure and similarity measure, we construct the sim-
ilarity measure using distance measure. As we noted before,
fuzzy entropy is the function of distance measure. Hence sim-
ilarity measure is constructed through the fuzzy entropy, and
we prove. And similarity measure is also induced through dis-
tance measure. We verify that the proposed measure is the
similarity measure.
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