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Abstract 
Discussion and analysis about relative mutual information has been carried out through fuzzy entropy and similarity measure. Fuzzy relative 
mutual information measure (FRIM) plays an important part as a measure of information shared between two fuzzy pattern vectors. This 
FRIM is analyzed and explained through similarity measure between two fuzzy sets. Furthermore, comparison between two measures is also 
carried out. 
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1. Introduction 
 
Major issue in unsupervised pattern recognition is the 

designing similarity between two vectors. The determining 
measures are referred to the similarity measure (SM) and 
dissimilarity measure (DM). These measures play an essential 
role in pattern recognition, classification and clustering. 
Information quantization represents interesting research theme, 
in which data vagueness can be illustrated by clear number. 
Design of fuzzy entropy for calculation of uncertainty has been 
studied by numerous researchers [1-3]. Most of results were 
concentrated in the designing of fuzzy entropies [1,2], and 
many parts of them also showed the implicit results of fuzzy 
entropies [1]. Hence, to apply real data explicit fuzzy entropy 
has to be needed. For information evaluation similarity measure 
has to be needed. Applying similarity measure, there must be 
needed comparing data sets. Conventional similarity measure 
has been designed based on the fuzzy number and distance 
measure [4-6]. Similarity measure with fuzzy number can be 
found in references [4]. However, similarity measure is 
restricted within the triangular and trapezoidal fuzzy 
membership function cases [4]. Whereas, similarity measures 
are possible to design for all kinds of fuzzy membership 
function pair if the similarity measures are designed by distance 
measure. With those designed similarity measure reliable data 
selection problem has been solved [7].  

Mutual information analysis can be done by using FRIM or 
similarity measure between fuzzy sets A  and B . Ding et al 
proposed the relative information which is based on the fuzzy 
entropy. Considered fuzzy entropy can be defined by the DM 
between two fuzzy sets. Furthermore, relation between fuzzy 
entropy and similarity measure has also studied [7], and 
counter meaning of similarity measure was defined by 
dissimilarity measure, in which dissimilarity measure was 

derived through similarity and vise versa [5]. Those relations 
give us the result that two measures can be obtained through 
counter measure designing. Fuzzy relative information measure 
has been considered by way of similarity measure. With this 
result FRIM was considered via similarity measure. 

In the next chapter, fuzzy entropy and similarity measure are 
introduced to describe the quantization of information. Fuzzy 
entropies derived by Shannon and Zadeh are introduced and 
explained. In Chapter III, conventional mutual information 
measure is compared with the proposed similarity measure.  
Finally, conclusions are followed in Chapter IV.   

 
 

2. Perliminaries of similarity measure 
 
It is well known that the fuzzy entropy depicts the degree of 

fuzziness for a fuzzy set. De Luca and Termini defined 
information entropy about fuzzy set as following mapping: 

+→ RXH )(: ξ  

)(| AHA → , 

where )(Xξ  is a set consisting of all fuzzy subsets of 

universe of discourse X , and )(XA ξ∈ .  
 

Definition 2.1 [8] Fuzzy entropy H satisfies following four 
axioms, that is: 
 

(i) 0)( =AH  if and only if ( ) 0A xμ = or 1, x X∀ ∈  

(ii) )(AH  takes the maximum value if and only if 

( ) 1/ 2A xμ = , x X∀ ∈  

(iii) if A Bπ then ( ) ( )H A H B≤ , where A Bπ  means 
A  is a sharp set B , i.e. 
0 ( ) ( ) 1/ 2,A Bx xμ μ≤ ≤ ≤  for 0 ( ) 1/ 2B xμ≤ ≤  

1/ 2 ( ) ( ) 1,B Ax xμ μ≤ ≤ ≤  for 1/ 2 ( ) 1B xμ≤ ≤  
(iv) ( ) ( ),H A H A=  where A  is complementary set of 
A . 
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Zadeh proposed the concept of fuzzy entropy in 1968 [9]. 
However, his definition does not satisfy the four axioms of 
fuzzy entropy, it is only a kind of weighted Shannon 
information entropy. Kaufmann also proposed the information 
entropy of fuzzy set, however it has the problem when the 
membership degree is the same [10]. Besides these results, 
Kosko and Pal and Pal proposed fuzzy entropies which 
satisfying De Luca and Termini fuzzy entropy [8]. 

Next, similarity measure between two sets is defined in 
Definition 2.2 [1]. On the contrary the properties of Definition 
2.1 similarity measure shows that the degree of closeness 
between two sets containing fuzzy sets or ordinary sets. 

 
Definition 2.2 For , ( )A B F X∀ ∈ and ( )D P X∀ ∈ , 
similarity measure has following four properties 
 

(S1) ( , ) ( , )s A B s B A= , , ( )A B F X∀ ∈  

(S2) ( , ) 0cs D D = , ( )D P X∀ ∈   

(S3) ,( , ) max ( , )A B Fs C C s A B∈= , ( )C F X∀ ∈  

(S4) , , ( )A B C F X∀ ∈ , if A B C⊂ ⊂ , then 

( , ) ( , )s A B s A C≥  and ( , ) ( , )s B C s A C≥ , 
( )F X  and ( )P X  denote fuzzy set and ordinary set, 

respectively.  
These two definitions 2.1 and 2.2 reveal counter meaning 

each other, and their summation represent total information of 
dissimilarity and similarity measure respectively [5].  

 
2.1 Illustrations of Fuzzy Entropies and Similarity 
measures 

There are many fuzzy entropies satisfying Definition 2.1, 
following entropies are satisfying four axioms of Definition 2.1, 
and the proofs are found in our previous results [5, 6].  

• Entropy of fuzzy data set with respect to the 
corresponding ordinary set can be designed using 
distance measure.  

( , )neare A A = ( ,[1] )near Xd A A∩ ( ,[0] ) 1near Xd A A+ ∪ −  

( , ) ( ,[0] ) ( ,[1] )C C
near near X near Xe A A d A A d A A= ∩ + ∪    

( , )neare A A = 1 ( ,[0] )near Xd A A− ∩ ( ,[1] )near Xd A A− ∪  

Where, crisp set nearA  represents the crisp set “near” to the 

fuzzy set A . nearA  is referred by variable as 0 1near≤ ≤ . 

For example, the value of crisp set 0.5A  represent one when 

( )A xμ ≥ 0.5, and it is zero when ( )A xμ ≤  0.5. Above fuzzy 

entropies are represent the degree of uncertainty between fuzzy 
set and corresponding deterministic ordinary set nearA .  

Basically, conventional fuzzy entropy represent the DM 
between set A  and nearA . 

• Next, similarity measures between two data sets are 
also followed.  

( , )s A B = ( ,[0] )Xd A B∩ + ( ,[1] )Xd A B∪  

( , ) 1 ( ,[0] ) ( ,[1] )C C
X Xs A B d A B d A B= − ∩ − ∪  

( , ) 2 ( ,[1] ) ( ,[0] )X Xs A B d A B d A B= − ∩ − ∪  

where A B∩ and A B∪ are expressed the minimum and 
maximum value, expressions are commonly used in fuzzy set 
theory. Hence, ( )( ) min( ( ), ( ))A B x A x B x∩ = and 

( )( ) max( ( ), ( ))A B x A x B x∪ = , respectively. The distance is 

defined by ( )d A B∩
1

1 | ( ) ( ) |
n

A i B i
i

x x
n

μ μ
=

= −∑ . [1]X  and 

[0]X  satisfy one and zero for the universe of discourse, 
respectively. Furthermore proofs of the conventional similarity 
measure can be also found in previous results [5].  

Equations of fuzzy entropy and similarity can be also 
explained by graphical point of view. Fuzzy entropy means the 
degree of uncertainty or the dissimilarity between two data sets, 
fuzzy set and corresponding ordinary set generally. Hence, it 
can be design through many ways satisfying Definition 2.1. 
Similarity measure represents the degree of similarity between 
all kinds of data sets. Fuzzy entropy and similarity can be 
explained by graphical illustration in Fig. 1. From Fig. 1 shaded 
area represent the common information of two fuzzy sets with 
membership functions. Hence, regions C and D satisfy the 
definition of similarity measure. Except region of C and D 
satisfy the dissimilarity between two data sets. Therefore, it is 
denoted by fuzzy entropy or dissimilarity measure. By Fig. 1 
the relation between similarity and dissimilarity has been 
emphasized in our previous result [5]. 

 

 
Fig. 1 Gaussian type two membership functions 

  
In which the total information of two fuzzy set membership 

functions are represented by the summation of results similarity 
and dissimilarity measure. Non-convex fuzzy member are 
uncommon for the fuzzy set theory. However, non-convex 
fuzzy membership functions same results were also obtained 
[11].    

 
2.2 Fuzzy Relative Information Measure 

Relative measure was introduced by Ding et al [12]. Which 
means “the influence degree of the fuzzy set A  to fuzzy 
set B ”, and vise versa. They have described the fuzzy relative 
information measure of B  to A , [ , ]R A B . 

 
( ) ( ) ( | )

[ , ]
( ) ( )

H A B H A H A B
R A B

H A H A
∩ −

= =   (1) 

is represented by an influence degree of the fuzzy set A to 
the fuzzy set B . Where, ( )H A represents the entropy 

function based on the Shannon function: 
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[ ( ) log ( )1( )
(1 ( )) log(1 ( ))]

A A

x X A A

x x
H A

x xn
μ μ

μ μ∈

= −
+ − −∑  and 

   
[ ( ) log ( )1( )

(1 ( )) log(1 ( ))]
B B

x X B B

x x
H A B

x xn
μ μ

μ μ+∈

∩ = −
+ − −∑

 
[ ( ) log ( )1

(1 ( )) log(1 ( ))]
A A

x X A A

x x
x xn

μ μ
μ μ−∈

−
+ − −∑ . 

 
Where, { | , ( ) ( )}A BX x x X x xμ μ+ = ∈ ≥ and 

{ | , ( ) ( )}A BX x x X x xμ μ− = ∈ < are satisfied 
respectively. [ , ]R A B satisfies the ratio between entropies of 

A B∩ and A . Hence, virtual ordinary set corresponding to 
the fuzzy set has to be needed. 

 
 
3. Fuzzy Relative Information with Similarity 

Measure 
 
Fuzzy relative information was analyzed through fuzzy 

entropy [12]. Fuzzy entropy is explained by comparing fuzzy 
set with respect to the corresponding ordinary set. In order to 
organize the relative information measure, virtual ordinary set 
has to be readied for entropy calculation. However, similarity 
measure can provide direct calculation between two fuzzy 
membership functions. Hence, relative information measure 
design with similarity measure can be efficient to minimize 
calculation time and decrease the design complexity. 

 
3.1 Characteristics of Relative Information Measure 

Definition of relative information has not been formulated by 
researchers. In [12], they just proposed fuzzy relative 
information measure [ , ]R A B as the fuzzy relative 
information measure of B  to A . Hence, definition of fuzzy 
relative information measure will be presented through 
analyzing the definition of [ , ]R A B . 

 
Proposition 3.1 Fuzzy relative information 
measure [ , ]R A B satisfies following properties: 

(i) [ , ] 0R A B =  if and only if there is no intersection 
between A and B , or ,A B are ordinary sets. 

(ii) [ , ] [ , ]R A B R B A=  if and only if ( ) ( )H A H B= . 
(iii) [ , ]R A B  takes maximum value and 
[ , ] [ , ]R A B R B A≥  if and only if A is contained in B , 

i.e, ( ) ( )A Bx xμ μ≤  for x X∀ ∈ . 

(iv) If A B C⊂ ⊂ , then ( , ) ( , )R B A R C A≥  and 

( , ) ( , ) ( , )R A B R A C R B C= = . 
 
Liu insisted that entropy can be calculated from the 

similarity measure and dissimilarity measure, which is denoted 
by 1s d+ = [ ]. With this concept relative information 
measure can be designed via similarity measure. By the 

definition of entropy for certain fact,  ( )H A B∩ and 
( )H A satisfy (( ), ( ) )nearH A B A B∩ ∩ and 
( , )nearH A A , respectively. Where, ( )nearA B∩  satisfies 

the same definition of nearA . Roughly, it can be satisfied that  

 
1 (( ), ( )

[ , ]
1 ( , )

)near

near

s A B A B
R A B

s A A
− ∩ ∩

=
−

 (2) 

Where, 
(( ), ( ) )
1 (( ), ( ) )

near

near

s A B A B
H A B A B
∩ ∩

= − ∩ ∩
 and 

( , ) 1 ( , )near nears A A H A A= − . 
This measure also satisfies Proposition 3.1. Next, another 

relative information measure satisfying Proposition 3.1 without 
virtual ordinary sets  ( )nearA B∩  and nearA  is 

considered.  
 

3.2 Fuzzy Entropy and Similarity Measure 
Fuzzy relative information characteristic which satisfying 

Proposition 3.1 was proposed through entropy of fuzzy set   
A  and B , [ , ]R A B . With consideration the structure of 

similarity measure relative information measure satisfies 
following formation. 

 
(( ), ( )

[ , ]
( , )

)C

C

s A B A B
R A B

s A A
∩ ∩

=  (3) 

By considering the characteristics of Proposition 3.1, (i) 
and(ii) are clear. (iii) also satisfies because A B A∩ =  if 

( ) ( )A Bx xμ μ≤ , furthermore [ , ] 1R A B =  and 
[ , ] 1R B A ≤ are satisfied naturally. Finally, (iv) is followed 

with the fact of (iii). In proposed (3), similarity measure can be 
replaced by explicit formulations of Chapter II.   

• Next, computation of influence degree of fuzzy set to 
another fuzzy set is carried out through data selection 
problem. Illustration of data selection from a universal 
set has been done as follows: 

(1) Selection of 5 students out of 65 students 
(2) Selection trials are independent each other 
(3) Selection is done randomly 

Student point distribution has to be satisfied Gaussian type 
naturally. Table 1 shows the 65 students’ point, whose mean is 
52.7 and the standard deviation is 14.49. 

 

Table1. Point list of 65 students 

65 
students 
points 

82, 81.5, 76, 75, 75, 68, 67, 65.5, 65, 64.5, 64, 
63.5, 63, 63, 62.5, 62, 61, 61, 60, 60, 60, 59, 59, 
59, 58, 58, 58, 57.5, 57.5, 57, 56.8, 56, 55.5, 54, 
53.5, 52.5, 52.5, 52.5, 52.5, 52, 51, 51, 49.5, 48, 
47.5, 46.5, 46, 45.5, 45, 45, 44, 43, 41.5, 41, 40, 

37, 37, 36, 33.5, 32, 31, 27, 26.5, 21, 0 
Mean :52.7, standard deviation : 14.5  

 
With data of Table 1 data distribution is illustrated in Fig. 2. 

Data distribution can be also considered as the fuzzy set with 
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membership function, 

  { , ( ) | , 0 ( ) 1}
middle middleA AA x x x X xμ μ= < > ∈ ≤ ≤ . 

( )
middleA xμ is the middle grade student membership function.  

 
Fig. 2 Point distribution consideration as membership function 
 
The average-level students have grades of B and C whose 

points are between 37 and 71. Every student who is contained 
in those areas can be called middle level or average level 
student, heuristically. However, the problem of how much they 
are in the middle level is a more delicate and philosophical 
problem. In this example computation of the fuzzy entropy and 
similarity measure represent the uncertainty and certainty with 
respect to the ordinary data set, i.e, grades B and C. By 
heuristic approach the second trial is the best among 
experiments, however computation of fuzzy entropy show the 
somewhat different result [7]. Test results are summarized in 
Table 2.  

 
Table 2. Fuzzy entropy and Similarity of Sample data 

 Sample 
Membership 

value 
Fuzzy entropy 

Similarity 
value 

Test 1 

25 0.161 0.323 0.161 
44 0.835 0.329 0.835 
54 0.996 0.008 0.996 
61 0.849 0.302 0.849 
80 0.170 0.340 0.170 

Average 52.8 0.600 0.260 0.6021 

Test 2 

50 0.983 0.034 0.983 
52 0.999 0.002 0.999 
55 0.987 0.025 0.987 
57 0.957 0.086 0.957 
59 0.990 0.180 0.990 

Average 54.6 0.980 0.066 0.9832 

Test 3 

43 0.800 0.400 0.800 
52 0.999 0.002 0.999 
54 0.996 0.008 0.996 
55 0.987 0.025 0.987 
69 0.532 0.937 0.532 

Average 54.6 0.860 0.275 0.8628 

Test 4 
12 0.019 0.039 0.019 
46 0.899 0.203 0.899 
53 1.000 0.000 1.000 

55 0.987 0.025 0.987 
91 0.031 0.016 0.031 

Average 51.4 0.590 0.066 0.5872 
 
 
By the meaning of fuzzy entropy, the entropy value 

approaches zero, the student group has a higher tendency 
toward B and C grade. The average entropy values of the 
groups obtained are 0.260, 0.066, 0.275, and 0.066. The fuzzy 
entropy results indicate that the 2nd and 4th trials are the 
nearest average level. Is it really certain? From the statistical 
point of view, the mean values of the trials are 52.8, 54.6, 54.6, 
and 51.4, respectively. The statistical results showed that the 
sample means of each case is similar to the total average; 
however, the 1st trial illustrates the nearest value to the mean. 

 
Table 3. Difference mean and entropy of 4 trials 

 Difference with mean Fuzzy entropy 
Test 1 0.1 0.260 
Test 2 1.9 0.066 
Test 3 1.9 0.275 
Test 4 1.3 0.066 

 
With the results, the similarity measure 0.602, 0.983, 0.863 

and 0.587 are computed, respectively. The 2nd trial has the 
highest similarity value among 4 trials, hence it can be 
determined that Test 2 result is the nearest average level 5 
students among the 4 times trials with only similarity measure. 
From this decision, with only similarity measure provides 
which trial is the most reliable data selection for this problem. 
To obtain same result fuzzy entropy calculation is needed more 
statistical information. Whereas compared to those results of 
fuzzy entropy, similarity measure has explicit advantage for 
reliable data selecting. 
 
3.3 Analysis by Relative Information 

Proposed relative information measure (3), denominator is 
the same for all trials. Hence, numerator comparisons are 
followed. In ))(),(( CBABAs ∩∩ , Fuzzy set A is 

considered as the middle level fuzzy set, and its membership 
function satisfies Fig. 2. Whereas test data are also considered 
by fuzzy set B .  Fig. 4 shows two membership functions 
between continuous and discrete cases.  

 
Table 4. Computation of A B∩ and ( )CA B∩  

 Sample 
Membership 

value 
A B∩  ( )CA B∩

Test 1

25 0.161 0.161 0.839 
44 0.835 0.835 0.165 
54 0.996 0.996 0.004 
61 0.849 0.849 0.151 
80 0.170 0.170 0.830 

Test 2
50 0.983 0.983 0.017 
52 0.999 0.999 0.001 
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55 0.987 0.987 0.013 
57 0.957 0.957 0.043 
59 0.990 0.990 0.010 

Test 3 

43 0.800 0.800 0.200 
52 0.999 0.999 0.001 
54 0.996 0.996 0.004 
55 0.987 0.987 0.013 
69 0.532 0.532 0.468 

Test 4 

12 0.019 0.019 0.981 
46 0.899 0.899 0.101 
53 1.000 1.000 0.000 
55 0.987 0.987 0.013 
91 0.031 0.031 0.969 

 
Computation of (( ), ( ) )Cs A B A B∩ ∩ has been 

followed with the similarity measure in Chapter II. 
 

Table 5. Similarity computation 

 (( ), ( ) )Cs A B A B∩ ∩
Test 1 0.2604 
Test 2 0.0336 
Test 3 0.2744 
Test 4 0.0656 

 
Values of Table 5 indicates “the influence degree of the 

fuzzy set A  to fuzzy set B ”, i.e, “the influence degree of the 
middle level set to selection data”. Hence, if the value goes to 
zero selection is similar to the considering set. Actually, Test 2 
is very similar to the middle level fuzzy set.  

 
 

4. Conclusions 
 
For information data groups, each datum or data set can be 

represented by uncertainty or certainty for fixed numerical 
values. Furthermore, it also has a correlation between the 
degree of similarity and dissimilarity, these values are 
evaluated by fuzzy entropy and similarity measure. First, fuzzy 
entropy and similarity are introduced, and discussed their 
meaning and application. Fuzzy relative information measure 
has a role to represent the influence degree of fuzzy set to 
another fuzzy set. Measure was proposed by Ding et al, which 
was constructed through fuzzy entropy. With similarity 
measure, dual meaning of fuzzy entropy, another relative 
information measure is proposed, and characteristics is also 
proved. Data section problem was applied to verify the 
usefulness. Conventional results with fuzzy entropy and 
similarity measure are also compared. By simple calculation 
proposed relative information measure has its own properness 
to analyze relation between two data sets. 

 
 

Acknowledgment 
 
This work was supported by 2nd BK21 Program, which is 

funded by KRF (Korea Research Foundation). 
This work was supported by Priority Research Centers 

Program through the National Research Foundation of 
Korea(NRF) funded by the Ministry of Education, Science and 
Technology(2010-0020163) 

 

 

References 
 

[1] L. Xuecheng, “Entropy, distance measure and similarity 
measure of fuzzy sets and their relations”, Fuzzy Sets and 
Systems, vol. 52, pp. 305-318, 1992. doi: 10.1016/0165-
0114(92)90239-Z 

[2] D. Bhandari and N.R. Pal, “Some new information measure of 
fuzzy sets”, Inform. Sci. vol. 67, pp. 209–228, 1993. doi: 
10.1016/0020-0255(93)90073-U. 

[3] Ghosh, “Use of fuzziness measure in layered networks for 
object extraction: a generalization”, Fuzzy Sets and Systems, 
vol. 72, pp. 331–348,1995. doi: 10.1016/0165-
0114(94)00291-E. 

[4] S.J. Chen and S.M. Chen. Fuzzy risk analysis based on 
similarity measures of generalized fuzzy numbers. IEEE Trans. 
on Fuzzy Systems, vol. 11, no. 1, pp.45-56, 2003. doi: 
10.1109/TFUZZ.2002.806316. 

[5] S.H. Lee, W. Pedrycz, and Gyoyong Sohn, “Design of 
Similarity and Dissimilarity Measures for Fuzzy Sets on the 
Basis of Distance Measure”,  International Journal of Fuzzy 
Systems, vol. 11,  pp. 67-72, 2009. 

[6] S.H. Lee, K.H.Ryu, G.Y. Sohn, “Study on Entropy and 
Similarity Measure for Fuzzy Set”, IEICE Trans. Inf. & Syst., 
vol. E92-D, pp. 1783-1786, 2009. 

[7] S.H. Lee, Y.T. Kim, S.P. Cheon, and S.S. Kim, “Reliable data 
selection with fuzzy entropy”, LNAI, vol. 3613, pp. 203–212, 
2005. 

[8] DeLuca and S. Termini, “Adefinition of nonprobablistic 
entropy in the setting of fuzzy sets theory”, Information and 
Control, vol. 20, no. 3, pp. 301-312, 1972. 
doi:10.1016/S0019-9958(72)90199-4. 

[9] L.A. Zadeh, “Probabilistic measures of fuzzy events”, Journal 
of Mathematical Analysis and Applications, vol. 23, no. 10, pp. 
421-727, 1968 

[10] Kaufmann(ed.), Introduction to the Theory of Fuzzy Subsets-
Fundamental Theoretical Elements, Academic Press, New 
York, 1975.  

[11] S.H. Lee, S. J. Kim, N. Y. Jang, “Design of Fuzzy Entropy for 
Non Convex   Membership Function”, CCIS, vol. 15, pp. 
55–60, 2008. doi:10.1007/978-3-540-85930-7. 

[12] S.F. Ding, S,H. Xia, F.X. Jin, Z.Z. Shis, “Novel fuzzy 
information proximity measures”, Journal of Information 
Science, vol. 33, no. 6, 678-685, 2007. doi: 
10.1177/0165551507076332. 



 

 

Mutual Information Analysis with Similarity Measure 

 

223 
 
 

 
 

Hong-mei Wang received the B.S degree in 
Automation Control Engineering at Qingdao 
University, China, in 2006. Now she is a 
Ph.D candidate in School of Mechatronics 
Engineering, Changwon National University, 
Korea. Her research interests include in the 
area of designing system applied for 

wireless communication modem and various systems required 
advanced digital signal processing 
 
 

Sanghyuk Lee received the B.S. in EE from 
Chungbuk National University, in 1988, 
M.S. and Ph.D. degrees in EE from Seoul 
National University, in 1991 and 1998, 
respectively. Dr. Lee served as a Research 
Fellow from 1996 to 1999 in HOW Co.. He 
is currently a Research Professor in Institute 
for Information and Electronics Research in 

Inha University as a Research Professor. His research interests 
include fuzzy theory, game theory, controller design for linear 
and nonlinear systems.  
 


