• Title/Summary/Keyword: fuzzy metric spaces

Search Result 71, Processing Time 0.029 seconds

FIXED POINT THEOREMS IN FUZZY METRIC SPACES FOR MAPPINGS WITH SOME CONTRACTIVE TYPE CONDITIONS

  • Patir, Bijoy;Goswami, Nilakshi;Mishra, Lakshmi Narayan
    • Korean Journal of Mathematics
    • /
    • v.26 no.2
    • /
    • pp.307-326
    • /
    • 2018
  • In this paper, we derive some fixed point theorems in fuzzy metric spaces for self mappings satisfying different contractive type conditions. Some of these theorems generalize some results of Wairojjana et al. (Fixed Point Theory and Applications (2015) 2015:69). Several examples in support of the theorems are also presented here.

COMMON COUPLED FIXED FOINT THEOREMS FOR NONLINEAR CONTRACTIVE CONDITION ON INTUITIONISTIC FUZZY METRIC SPACES WITH APPLICATION TO INTEGRAL EQUATIONS

  • Deshpande, Bhavana;Sharma, Sushil;Handa, Amrish
    • The Pure and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.159-180
    • /
    • 2013
  • We establish a common fixed point theorem for mappings under ${\phi}$-contractive conditions on intuitionistic fuzzy metric spaces. As an application of our result we study the existence and uniqueness of the solution to a nonlinear Fredholm integral equation. We also give an example to validate our result.

FIXED-POINT THEOREMS FOR (𝜙, 𝜓, 𝛽)-GERAGHTY CONTRACTION TYPE MAPPINGS IN PARTIALLY ORDERED FUZZY METRIC SPACES WITH APPLICATIONS

  • Goswami, Nilakshi;Patir, Bijoy
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.375-389
    • /
    • 2022
  • In this paper, we prove some fixed-point theorems in partially ordered fuzzy metric spaces for (𝜙, 𝜓, 𝛽)-Geraghty contraction type mappings which are generalization of mappings with Geraghty contraction type condition. Application of the derived results are shown in proving the existence of unique solution to some boundary value problems.

COMMON FIXED POINT THEOREM IN FUZZY METRIC SPACE USING CONTROL FUNCTION

  • Kumar, Amit;Vats, Ramesh Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.517-526
    • /
    • 2013
  • We give a fixed point theorem for complete fuzzy metric space which generalizes fuzzy Banach contraction theorems established by V. Gregori and A. Spena [Fuzzy Sets and Systems 125 (2002), 245-252] using notion of altering distance, initiated by Khan et al. [Bull. Austral. Math. Soc. 30 (1984), 1-9] in metric spaces.

Some Common Fixed Point Theorems using Compatible Maps in Intuitionistic Fuzzy Metric Space

  • Park, Jong-Seo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.2
    • /
    • pp.108-112
    • /
    • 2011
  • Kaneko et a1.[4] etc many authors extended with multi-valued maps for the notion of compatible maps in complete metric space. Recently, O'Regan et a1.[5] presented fixed point and homotopy results for compatible single-valued maps on complete metric spaces. In this paper, we will establish some common fixed point theorems using compatible maps in intuitionistic fuzzy metric space.

MULTI-VALUED HICKS CONTRACTIONS IN 𝑏-MENGER SPACES

  • Youssef Achtoun;Mohammed Sefian Lamarti;Ismail Tahiri
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.477-485
    • /
    • 2024
  • In this work, we will generalize the notion of multivalued (ν, 𝒞)-contraction mapping in 𝑏-Menger spaces and we shall give a new fixed point result of this type of mappings. As a consequence of our main result, we obtained the corresponding fixed point theorem in fuzzy 𝑏-metric spaces. Also, an example will be given to illustrate the main theorem in ordinary 𝑏-metric spaces.

A Fixed Point for Pair of Maps in Intuitionistic Fuzzy Mtric Space

  • Park, Jong-Seo;Kim, Seon-Yu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.3
    • /
    • pp.159-164
    • /
    • 2007
  • Park, Park and Kwun[6] is defined the intuitionistic fuzzy metric space in which it is a little revised from Park[5]. According to this paper, Park, Kwun and Park[11] Park and Kwun[10], Park, Park and Kwun[7] are established some fixed point theorems in the intuitionistic fuzzy metric space. Furthermore, Park, Park and Kwun[6] obtained common fixed point theorem in the intuitionistic fuzzy metric space, and also, Park, Park and Kwun[8] proved common fixed points of maps on intuitionistic fuzzy metric spaces. We prove a fixed point for pair of maps with another method from Park, Park and Kwun[7] in intuitionistic fuzzy metric space defined by Park, Park and Kwun[6]. Our research are an extension of Vijayaraju and Marudai's result[14] and generalization of Park, Park and Kwun[7], Park and Kwun[10].