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Abstract. In this article we study different properties of the statistically convergent and

statistically null sequence classes of fuzzy real numbers with fuzzy metric, like complete-

ness, solidness, sequence algebra, symmetricity and convergence free.

1. Introduction

The concept of fuzzy set, a set whose boundary is not sharp or precise has been
introduced by L. A. Zadeh in 1965. It is the origin of new theory of uncertainty,
distinct from the notion of probability. After the introduction of fuzzy sets, the
scope for studies in different branches of pure and applied mathematics increased
widely. The notion of fuzzy sets has successfully been applied in studying sequence
spaces by Nanda [4], Nuary and Savas [5], Savas [7], Syau [9], Tripathy and Baruah
[11], Tripathy and Dutta [12], Tripathy and Sarma ([13], [14]) and many others.

The notion of statistical convergence was introduced by Fast [1] and Schoenberg
[8] independently. The potential of the introduced notion was realized in eighties
by the workers on sequence spaces. Since than, a lot of work has been done on
classical statistically convergent sequences. It is evidenced by the works of Fridy
[2], alt [6], Tripathy [10], Tripathy and Sen [15] and many others. Though some
work have been done on statistically convergent sequences of fuzzy real numbers
under classical metric, but a very little work has been done on fuzzy metric. This
motivated us to investigate statistically convergent sequence spaces of fuzzy real
numbers by fuzzy metric.
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2. Definitions and Preliminaries

Definition 2.1. A fuzzy real number X is a fuzzy set on R, i.e. a mapping
X : R → I(= [0, 1]) associating each real number t with its grade of membership
X(t).

Definition 2.2. A fuzzy real number X is called convex if X(t) ≥ X(s) ∧X(r) =
min (X(s), X(r)), where s < t < r.

Definition 2.3. If there exists t0 ∈ R such that X(t0) = 1, then the fuzzy real
number X is called normal.

Definition 2.4. A fuzzy real number X is said to be upper-semi continuous if, for
each ε > 0, X−1([0, a+ ε)), is open in the usual topology of R for all a ∈ I.

The set of all upper-semi continuous, normal, convex fuzzy real numbers is denoted
by R(I). Throughout the article, by a fuzzy real number we mean that the number
belongs to R(I).

Definition 2.5. The α-level set [X]α of the fuzzy real number X, for 0 < α ≤ 1,
is defined by [X]α = {t ∈ R : X(t) ≥ α}. If α = 0, then it is the closure of the
strong 0-cut. (The strong α -cut of the fuzzy real number X, for 0 ≤ α ≤ 1 is the
set {t ∈ R : X(t) > α}).

Let X,Y ∈ R(I) and α-level sets be [X]α = [aα1 , bα1 ], [Y ]α = [aα2 , bα2 ], α ∈ [0, 1].
Then the arithmetic operations on R(I) in terms of α-level sets are defined as fol-
lows:

[X ⊕ Y ]α = [aα1 + aα2 , bα1 + bα2 ] ,

[X ⊖ Y ]α = [aα1 − bα2 , bα1 − aα2 ] ,

[X ⊗ Y ]α =

[
min

i,j∈{1,2}
aαi b

α
j , max

i,j∈{1,2}
aαi b

α
j

]
and [1÷ Y ]α =

[
1
bα2
, 1

aα
2

]
, 0 /∈ Y.

For X,Y ∈ R(I) consider a partial ordering ≤ (refer to Kaleva and Seikkala [3]) as

X ≤ Y if and only if aα1 ≤ aα2 and bα1 ≤ bα2 , for all α ∈ (0, 1],

where [X]α = [aα1 , bα1 ], [Y ]α = [aα2 , bα2 ], α ∈ [0, 1].

Definition 2.6. The absolute value, |X| of X ∈ R(I) is defined by (see for instance
Kaleva and Seikkala [3] )

|X|(t) =
{
max(X(t), X(−t)), for t ≥ 0,
0, for t < 0.
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Definition 2.7. A fuzzy real number X is called non-negative if X(t) = 0, for all
t < 0. The set of all non-negative fuzzy real numbers is denoted by R∗(I).

Definition 2.8. A fuzzy real number sequence (Xk) is said to be bounded if |Xk| ≤
µ, for some µ ∈ R∗(I).

Definition 2.9. A subset E of N is said to have natural density δ(E) if

δ(E) = lim
n→∞

1

n

∞∑
k=1

χE(k) exists,

where χE(k) is the characteristic function of E. Clearly all finite subsets of N have
zero natural density and δ(Ec) = δ(N − E) = 1− δ(E ).

Definition 2.10. A sequence (Xk) is said to be statistically convergent to L if

for every ε > 0, δ ({k ∈ N : |Xk − L| ≥ ε}) = 0. We write Xk
stat−→ L or stat-lim

Xk = L.

Definition 2.11. Let (Xk) and (Yk) be two sequences, then we say that Xk= Yk

for almost all k (in short a.a.k. ) if δ(k ∈ N : Xk ̸= Yk) = 0.

Definition 2.12. A class of sequences EF is said to be normal (or solid) if (Yk) ∈
EF , whenever |Yk| ≤ |Xk|, for all k ∈ N and (Xk) ∈ EF .

Definition 2.13. Let K = {k1 < k2 < k3 . . .} ⊆ N and EF be a class of sequences.

A K-step set of EF is a class of sequences λEF

k = {(Xkn) ∈ wF : (Xn) ∈ EF }.

Definition 2.14. A canonical pre-image of a sequence (Xkn) ∈ λEF

k is a sequence
(Yn) ∈ wF defined as follows:

Yn =

{
Xn, for n ∈ K,
0̄, otherwise.

Definition 2.15. A canonical pre-image of a step set λEF

k is a set of canonical

pre-images of all elements in λEF

k , i.e. Y is in canonical pre-image λEF

k if and only

if Y is canonical pre-image of some X ∈ λEF

k .

Definition 2.16. A class of sequences EF is said to be monotone if EF contains
the canonical pre-images of all its step sets.

From the above definitions we have the following well known Remark.

Remark 2.1. A class of sequences EF is solid ⇒ EF is monotone.

Definition 2.17. A class of sequences EF is is said to be symmetric if (Xπ(n)) ∈
EF , whenever (Xk) ∈ EF , where π is a permutation of N .

Definition 2.18. A class of sequences EF is is said to be sequence algebra if
(Xk ⊗ Yk) ∈ EF , whenever (Xk), (Yk) ∈ EF .
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Definition 2.19. A class of sequences EF is is said to be convergence free if
(Yk) ∈ EF , whenever (Xk) ∈ EF and Xk = 0̄ implies Yk = 0̄.

Fuzzy Metric Space:

Let d be a mapping from R(I) × R(I) into R∗(I) and let the mappings L,M :
[0, 1] × [0, 1] → [0, 1] be symmetric, non-decreasing in both arguments and satisfy
L(0, 0) = 0 and M(1, 1) = 1. Denote

[d(X,Y )]α = [λα(X,Y ), ρα(X,Y )], for X,Y ∈ R(I) and 0 < α ≤ 1.

Definition 2.20. The quadruple (R(I), d, L,M) is called a fuzzy metric space and
d a fuzzy metric, if

(1) d(X,Y ) = 0 if and only if X = Y,
(2) d(X,Y ) = d(Y,X) for all X,Y ∈ X,
(3) for all X,Y, Z ∈ R(I),

(i) d(X,Y )(s+ t) ≥ L(d(X,Z)(s), d(Z, Y )(t)) whenever s ≤ λ1(X,Z),
t ≤ λ1(Z, Y ) and (s+ t) ≤ λ1(X,Y ),

(ii) d(X,Y )(s+ t) ≤ M(d(X,Z)(s), d(Z, Y )(t)) whenever s ≥ λ1(X,Z),
t ≥ λ1(Z, Y ) and (s+ t) ≥ λ1(X,Y ).

It is known (refer to Kaleva and Seikkala [3] ) that in a fuzzy metric space
(X, d,Min,Max) the triangle inequality (3) is equivalent to

d(X,Y ) ≤ d(X,Z) + d(Z, Y ).

Let λ : R(I) × R(I) → R∗(I) be such that λ(X,Y ) = sup
0<α≤1

λα(X,Y ), where

λα(X,Y ) = min{| a1α − b1
α |, | a2α − b2

α |}, for α- cut of X = [a1
α, a2

α] and
α- cut of Y = [b1

α, b2
α].

Similarly, let ρ : R(I)×R(I) → R∗(I) be such that ρ(X,Y ) = sup
0<α≤1

ρα(X,Y ), where

ρα(X,Y ) = max{| a1α − b1
α |, | a2α − b2

α |}, for α- cut of X = [a1
α, a2

α] and
α- cut of Y = [b1

α, b2
α].

Throughout the paper we consider the fuzzy metric space with L = Min and
M = Max. Hence from Kaleva and Seikkala [3] it is clear that (R(I), d,Min,Max)
is a complete metric space.

With the concept of fuzzy metric, the following classes of sequences are defined.

ℓF∞ =

{
X = (Xk) ∈ wF : sup

k
λ(Xk, 0) < ∞ and sup

k
ρ(Xk, 0) < ∞

}
.
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ℓFp =

{
X = (Xk) ∈ wF :

∞∑
k=1

{
λ(Xk, 0)

}p
< ∞ and

∞∑
k=1

{
ρ(Xk, 0)

}p
< ∞

}
.

cF = {X = (Xk) ∈ wF : λ(Xk, L) → 0 and ρ(Xk, L) → 0, as k → ∞,

for some L ∈ R(I)}.

cF0 =
{
X = (Xk) ∈ wF : λ(Xk, 0) → 0 and ρ(Xk, 0) → 0, as k → ∞

}
.

c̄F = (δ({k ∈ N : λ(Xk, T ) ≥ ϵ}) = 0 and δ({k ∈ N : ρ(Xk, T ) ≥ ϵ}) = 0),

for some T ∈ R(I).

c̄0
F =

(
δ
({

k ∈ N : λ(Xk, 0) ≥ ϵ
})

= 0 and δ
({

k ∈ N : ρ(Xk, 0) ≥ ϵ
})

= 0
)
.

Throughout wF , ℓF∞, ℓFp , cF , cF0 , cF , mF and c0
F denote the classes of all,

bounded, p-absolutely summable, convergent, null, statistically convergent, bounded
statistically convergent and statistically null sequences of fuzzy real numbers re-
spectively.

3. Main Results

Theorem 3.1. mF = cF ∩ ℓF∞ is a closed subspace of the complete metric space
ℓF∞ with the fuzzy metric d∗ defined by

[d∗(X,Y )]α =

[
sup
k
λα(Xk, Yk), sup

k
ρα(Xk, Yk)

]
,

where X = (Xk) and Y = (Yk) are in mF and 0 < α ≤ 1 .

Proof. Since we are considering (R(I), d,Min,Max) metric space, so it can be
verified that d∗ is a metric on ℓF∞. Now we show that mF is complete with respect
to d∗ . Let (X(n)) is a Cauchy sequence in mF . Then (X(n)) be a Cauchy
sequence in ℓF∞ . Since ℓF∞ is a complete metric space, so X(n) → X , as n → ∞,
say, in ℓF∞ . We show that

(1) X ∈ mF .

Since X(n) = (X
(n)
k ) = (X

(n)
1 , X

(n)
2 , X

(n)
3 , . . . ) ∈ mF , so for each n ∈ N there

exists An ∈ R(I) such that

stat-lim X
(n)
k = An.

We prove the followings:

(i) lim
n→∞

An = A.
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(ii) stat-lim Xk = A.

(i). Since (X(n)) is a convergent sequence, so for a given ε > 0, there exists
such a n0 ∈ N that for each m,n > n0 we have

d∗(X(m), X(n)) <
ε

3
.

i.e.,

sup
k

λ(X
(m)
k , X

(n)
k ) <

ε

3
and sup

k
ρ(X

(m)
k , X

(n)
k ) <

ε

3

(2) ⇒ λ(X
(m)
k , X

(n)
k ) <

ε

3
and ρ(X

(m)
k , X

(n)
k ) <

ε

3
.

Again, since X(n) = (X
(n)
k ) ∈ mF , so for a given ε > 0, we have

(3) λ(X
(m)
k , Am) <

ε

3
and ρ(X

(m)
k , Am) <

ε

3
, for a.a.k.

(4) λ(X
(m)
k , An) <

ε

3
and ρ(X

(m)
k , An) <

ε

3
, for a.a.k.

Now for each m,n > n0 ∈ N and from the inequalities (2), (3) and (4), we get

λ(Am, An) ≤ λ(Am, X
(m)
k ) + λ(X

(m)
k , X

(n)
k ) + λ(X

(n)
k , An), for a.a.k.

<
ε

3
+

ε

3
+

ε

3
= ε

and ρ(Am, An) ≤ ρ(Am, X
(m)
k ) + ρ(X

(m)
k , X

(n)
k ) + ρ(X

(n)
k , An), for a.a.k.

<
ε

3
+

ε

3
+

ε

3
= ε

Thus (An) is a Cauchy sequence in R(I). Since R(I) complete, so there exists
such a number A ∈ R(I) such that

lim
n→∞

An = A.

(ii). We have X(n) → X. For a given ξ > 0, there exists such a q ∈ N that

sup
k

λ(X
(q)
k , Xk) <

ξ

3
and sup

k
ρ(X

(q)
k , Xk) <

ξ

3
.

(5) ⇒ λ(X
(q)
k , Xk) <

ξ

3
and ρ(X

(q)
k , Xk) <

ξ

3
, for each k ∈ N.

The number q can be chosen in such a way that together with (5), we get
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λ(Aq, A) <
ξ

3
and ρ(Aq, A) <

ξ

3
.

Since, stat-lim X
(q)
k = Aq.

For a given ξ > 0,

λ(X
(q)
k , Aq) <

ξ

3
and ρ(X

(q)
k , Aq) <

ξ

3
, for a.a.k., for each fixed q.

Now,

λ(Xk, A) ≤ λ(Xk, X
(q)
k ) + λ(X

(q)
k , Aq) + λ(Aq, A), for a.a.k., for eachfixed q.

< ξ
3 + ξ

3 + ξ
3 = ξ.

ρ(Xk, A) ≤ ρ(Xk, X
(q)
k ) + ρ(X

(q)
k , Aq) + ρ(Aq, A), for a.a.k., for each fixed q.

< ξ
3 + ξ

3 + ξ
3 = ξ.

Hence stat-lim Xk = A. This proves the result.

Theorem 3.2. The class of sequences c0
F is solid and as such is monotone.

Proof. Consider two sequences (Xk) and (Yk) such that

|Yk| ≤ |Xk|, for all k ∈ N and (Xk) ∈ c0
F .

Then for a given ε > 0, we have{
k ∈ N : λ(Xk, 0) ≥ ε

}
⊇

{
k ∈ N : λ(Yk, 0) ≥ ε

}
and

{
k ∈ N : ρ(Xk, 0) ≥ ε

}
⊇

{
k ∈ N : ρ(Yk, 0) ≥ ε

}
.

Since (Xk) ∈ c0
F , so δ

({
k ∈ N : λ(Xk, 0) ≥ ε

})
= 0

and δ
({

k ∈ N : ρ(Xk, 0) ≥ ε
})

= 0.

Hence δ
({

k ∈ N : λ(Yk, 0) ≥ ε
})

= 0 and δ
({

k ∈ N : ρ(Yk, 0) ≥ ε
})

= 0

Thus (Yk) ∈ c0
F and the class c0

F is solid.

The class of sequences c0
F is monotone follows from Remark 2.1.

Theorem 3.3. The classes of sequences cF and mF are neither monotone nor
solid.
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Proof. The result follows from the following example.

Example 3.1. Let us consider the sequence (Xk) ∈ mF , defined as follows:

For k = n2, n ∈ N, Xk(t) =

{
t− 2, for 2 ≤ t ≤ 3,
4− t, for 3 < t ≤ 4,
0, otherwise

and for, k ̸= n2, n ∈ N, Xk(t) =

{
1− k(t− 2−1), for 2−1 ≤ t ≤ 2−1 + k−1,
0, otherwise.

Now for α ∈ (0, 1] we get,

[Xk]
α =

{
[2 + α, 4− α], for k = n2, n ∈ N,
[2−1, 2−1 + k−1(1− α)], otherwise.

Clearly, λ ∈
(
Xk,

1
2

)
≤ ε and ρ ∈

(
Xk,

1
2

)
≤ ε , for a. a. k. Thus (Xk) ∈ cF .

Let J = {k ∈ N : k = 2i, i ∈ N} be a subset of N and let (mF )J be the canonical
pre-image of the J-step space (mF )J of mF , defined as follows:

(Yk) ∈ (mF )J is the canonical pre-image of (Xk) ∈ mF implies

Yk =
{
Xk, for k ∈ J ,
0̄ for k /∈ J.

Now, for α ∈ (0, 1] we have,

[Yk]
α =

 [4 + α, (4− α)], for k ∈ Jand k = n2, n ∈ N ,
[2−1, 2−1 + k−1(1− α)], for k ∈ J and k ̸= n2, for any n ∈ N ,
[0, 0], k /∈ J

For a given ε > 0, there is no definite point, say H such that λ (Xk, H) ≤ ε and
ρ (Xk, H) ≤ ε) , for a.a.k.

Thus (Yk) /∈ cF (⊃ mF ). Hence cF and mF are not monotone.

The classes cF and mF are not solid follows from the Remark 2.1.

Theorem 3.4. The classes of sequences cF , mF and c0
F are not symmetric.

Proof. The result follows from the following example.

Example 3.2. Consider the sequence (Xk) ∈ Z, for Z = cF ,mF and c0
F defined

as follows:
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For k = n2, n ∈ N, Xk(t) =

{
t− 2, for 2 ≤ t ≤ 3,
4− t, for 3 < t ≤ 4,
0, otherwise

and for, k ̸= n2, n ∈ N, Xk(t) =

{
1− 2−1kt, for 0 ≤ t ≤ 2−1k,
0, otherwise.

Now for α ∈ (0, 1] we have,

[Xk]
α =

{
[2 + α, 4− α], for k = n2, n ∈ N,
[0, 2k−1(1− α)], otherwise.

Clearly, (Xk) ∈ ℓ∞
F and for a given ε > 0, we have

λ
(
Xk, 0

)
≤ ε and ρ

(
Xk, 0

)
≤ ε, for a.a.k.

Thus (Xk) ∈ Z, for Z = cF ,mF and c0
F .

Let (Yk) be a rearrangement of the sequence (Xk), defined as follows:

(Yk) = (X1, X2, X4, X3, X9, X5, X16, X6, X25, X7 . . . ) .

Then for α ∈ (0, 1] we get,

[Yk]
α =

{
[2 + α, 4− α], for k odd,
[0, 2k−1(1− α)], for k even.

For a given ε > 0, there is no definite point, say H such that λ (Xk,H) ≤ ε and
ρ (Xk,H) ≤ ε) , for a.a.k.

Thus (Yk) /∈ Z, for Z = cF ,mF and c0
F .

Therefore the classes of sequences cF ,mF and c0
F are not symmetric.

Theorem 3.5. The classes of sequences cF ,mF and c0
F are sequence algebra.

Proof. We prove this result for the class c0
F , and for the other classes it can be

proved by following.

Let 0 < ε < 1 be given. Suppose (Xk), (Yk) ∈ c0
F .

Then we have,{
k ∈N : λ(Xk ⊗ Yk, 0) < ε

}
⊇

{
k ∈N : λ(Xk, 0) <

√
ε
}
∩
{
k ∈N : λ(Yk, 0) <

√
ε
}

and
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{
k ∈N : ρ(Xk ⊗ Yk, 0) < ε

}
⊇

{
k ∈N : ρ(Xk, 0) <

√
ε
}
∩
{
k ∈N : ρ(Yk, 0) <

√
ε
}

Since δ
({

k ∈ N : λ(Xk, 0) <
√
ε
})

= 1, δ
({

k ∈ N : λ(Xk, 0) <
√
ε
})

= 1

and δ
({

k ∈ N : ρ(Xk, 0) <
√
ε
})

= 1, δ
({

k ∈ N : ρ(Yk, 0) <
√
ε
})

= 1

So, δ
{
k ∈ N : λ(Xk ⊗ YK , 0) < ε

}
= 1 and δ

{
k ∈ N : ρ(Xk ⊗ YK , 0) < ε

}
= 1

Thus (Xk ⊗ Yk) ∈ c0
F . Hence the class c0

F is a sequence algebra.

Theorem 3.6. The classes of sequences cF ,mF and c0
F are not convergence free.

Proof. The result follows from the following example.

Example 3.3. Consider the sequence (Xk) ∈ Z, for Z = cF ,mF and c0
F defined

as follows:

For k = n2, n ∈ N, Xk = 0

and for k ̸= n2, n ∈ N, Xk(t) =

 1 + 3−1kt, for −3k−1 ≤ t ≤ 0,
1− 3−1kt, for 0 < t ≤ 3k−1,
0, otherwise.

Then for α ∈ (0, 1] we have,

[Xk]
α =

{
[0, 0], for k = n2, n ∈ N,
[3(α− 1)k−1, 3(1− α)k−1], otherwise.

Hence, (Xk) ∈ ℓ∞
F and for a given ε > 0, we have

λ
(
Xk, 0

)
≤ ε and ρ

(
Xk, 0

)
≤ ε, for a.a.k.

Thus (Xk) ∈ Z, for Z = cF ,mF and c0
F .

Let the sequence (Yk) ∈ Z, be defined as follows:

For k = n2, n ∈ N, Yk = 0

and for k ̸= n2, n ∈ N, Yk(t) =

{
1, for k ≤ t ≤ k + 1,
0, otherwise.

Then for α ∈ (0, 1] we have,

[Yk]
α =

{
[0, 0], for k = n2, n ∈ N,
[k, k + 1], otherwise.
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For a given ε > 0, there is no definite point, say H such that λ (Xk,H) ≤ ε and
ρ (Xk,H) ≤ ε) , for a.a.k.

Thus (Yk) /∈ Z, for Z = cF ,mF and c0
F .

Hence the classes cF ,mF and c0
F are not convergence free.
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