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COMPATIBLE MAPS AND COMMON FIXED POINTS IN
MENGER PROBABILISTIC METRIC SPACES

SERVET KUTUKCU AND SUSHIL SHARMA

ABSTRACT. In the present work, we introduce two types of compatible
maps and prove a common fixed point theorem for such maps in Menger
probabilistic metric spaces. Our result generalizes and extends many
known results in metric spaces and fuzzy metric spaces.

1. Introduction

There have been a number of generalizations of metric space. One such
generalization is Menger space introduced in 1942 by Menger [10] who used
distribution functions instead of nonnegative real numbers as values of the
metric. Schweizer and Sklar [13] studied this concept and then the important
development of Menger space theory was due to Sehgal and Bharucha-Reid [15].
Sessa [16] introduced weakly commuting maps in metric spaces. Jungck [7]
enlarged this concept to compatible maps. The notion of compatible maps
in Menger spaces has been introduced by Mishra [11]. Cho [1] et al. and
Sharma [17] gave fuzzy version of compatible maps and proved common fixed
point theorems for compatible maps in fuzzy metric spaces.

In this paper, we introduce the concept of compatible maps of type (P-1)
and type (P-2), show that they are equivalent to compatible maps under certain
conditions and prove a common fixed point theorem for such maps in Menger
spaces illustrating with an example which generalize, extend and fuzzify several
well known fixed point theorems for contractive type maps on metric spaces,
Menger spaces, uniform spaces and fuzzy metric spaces.

2. Preliminaries

In this section, we recall some definitions and known results in Menger space.
For more details we refer the readers to [2, 4-6, 8-13, 15, 18].

Definition 1. A triangular norm * (shorty t-norm) is a binary operation on
the unit interval [0, 1] such that for all a, b, ¢,d € [0, 1] the following conditions
are satisfied:
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(a) ax1=g;

(b) axb="b=x*a;

(c) a*xb < cxd whenever a < c and b < d;
(d) ax(b*c)=(axb)*c.

Examples of t-norms are a * b = max{a + b — 1,0} and a * b = min {a, b}.

Definition 2. A distribution function is a function F' : [—00, 00] — [0, 1] which
is left continuous on R, non-decreasing and F(—o0) = 0, F(oco) = 1.

We will denote by A the family of all distribution functions on [—oc0, 00]. H
is a special element of A defined by

0,t<0
H(t)={ 1,t>0.

If X is a nonempty set, F : X x X — A is called a probabilistic distance on X
and F(xz,y) is usually denoted by F,.

Definition 3 ([13]). The ordered pair (X, F) is called a probabilistic semimet-
ric space (shortly PSM-space) if X is a nonempty set and F is a probabilistic
distance satisfying the following conditions: for all z,y,2 € X and ¢,s > 0,

(PM-1) Fpy(t) = H(t) ==z = y;

(PM-2) F,, = F,q.

If, in addition, the following inequality takes place:

(PM-3) Fp.(t) =1, Foy(s) = 1= Fpy(t +s) =1,

then (X, F') is called a probabilistic metric space (shortly PM-space).

The ordered triple (X, F, ) is called Menger probabilistic metric space (sho-
rtly Menger space) if (X, F) is a PM-space, * is a t-norm and the following
condition is also satisfies: for all z,y,z€ X and ¢,5 > 0,

(PM-4) Fyy(t + s) > Fg, () * F,y(s).

For every PSM-space (X, F'), we can consider the sets of the form
Uer ={(z,y) € X x X : Fyy(e) > 1 - A}.

The family {U,, ,\}E>0, Ae(0,1) generates a semi-uniformity denoted by Ur and a
topology T called the F-topology or the strong topology. Namely,

A € 7p if and only if Vx € A3e>0and )€ (0, 1) such that U, »(z) C A.

Ur is also generated by the family {Vs}s., where Vs := Us s ([9]).
In [14], it is proved that if sup,, (¢t *t) = 1, then Ur is a uniformity, called
F-uniformity, which is metrizable.
The F-topology is generated by the F-uniformity and is determined by the
F-convergence:
Tn— e Fy o (0) > 1,VE>0.

Proposition 1 ([15]). Let (X, d) be a metric space. Then the metric d induces
a distribution function F defined by Fyy(t) = H(t — d(z,y)) for all z,y € X
and t > 0. If t-norm % is a x b = min {a, b} for all a,b € [0,1], then (X, F,*)
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is @ Menger space. Further, (X, F,*) ts a complete Menger space if (X,d) is
complete.

Definition 4 ([11}). Let (X, F,*) be a Menger space and * be a continuous
t-norm.

(a) A sequence {z,} in X is said to be converge to a point = in X {written
z, — z) if and only if for every ¢ > 0 and A € (0,1), there exists an integer
ng = ng(g, A) such that Fy () > 1 — A for all n > nyg.

(b) A sequence {z,} in X is said to be Cauchy if for every ¢ > 0 and
A € (0,1), there exists an integer ng = ng(e, ) such that Fy ey >1-~2A
for all n > ng and p > 0.

{c) A Menger space in which every Cauchy sequence is convergent is said to
be complete.

nLndp

Remark 1. If = is a continuous t-norm, it follows from (FM-4) that the limit
of sequence in Menger space is uniquely determined.

Definition 5 ([11]). Self maps A and B of a Menger spacc ;. X, F, x) are said to
be compatible if Fap,, paz, (t) — 1 for all £ > 0, whene or {z,} is a sequence
in X such that Az,, Bz, — z for some z in X as n — .

Following lemma can be selected from the proof ol 'heorem 3 of Sehgal and
Bharucha-Reid [15].

Lemma 1. Let {z,} be a sequence in o Menger space (X, F, *) with continuous
t-norm x and t xt > t. If there exists a constant k € (0,1) such that

F$n$n+1(kt) Z Fazﬁ_la:n (t)
forallt >0 andn=1,2,..., then {x,} is ¢ Cauchy sequence in X.
Lemma 2 ([18]). Let (X, F,*) be a Menger space. If there ezists k € (0,1)
such that
Fay(kt) 2 Foy(t)
foralz,ye X andt >0, then z = y.

3. Compatible maps of type (P-1) and type (P-2)

In this section, we introduce the concept of compatible mappings of type
(P-1) and type (P-2) in Menger spaces and show that they are equivalent to
compatible mappings under certain conditions.

Definition 6. Self maps A and B of a Menger space (X, F, %) are said to be
compatible of type (P) if Faps,ppe,(t) — 1 and Fpag, A4z, {t) — 1 for all
t > 0, whenever {z,} is a sequence in X such that Az, Bz, — z for some z
in X as n — oo.

Definition 7. Self maps A and B of a Menger space (X, F, x) are said to be
compatible of type (P-1) if Fapy, ps., (t) — 1 for all ¢ > 0, whenever {z,} is
a sequence in X such that Az,, Bz, — z for some 2z in X as n — oo.
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Definition 8. Self maps A and B of a Menger space (X, F, x) are said to be
compatible of type (P-2) if Fpaz, a4z, (t) — 1 for all t > 0, whenever {z,} is
a sequence in X such that Az, , Bz, — z for some z in X as n — oc.

Remark 2. Clearly, if a pair of mappings (A, B) is compatible of type (P-1),
then the pair (B, A) is compatible of type (P-2). Further, if A and B compatible
mappings of type (P), then the pair (A4, B) is compatible of type (P-1) as well
as type (P-2).

The following is an example of pair of self maps in a Menger space which
are compatible of type (P-1) and type (P-2) but not compatible.

Example 1. Let (X, d) be a metric space with the usual metric d where X =
[0,2] and (X, F, *) be the induced Menger space with Fy(t) = H(t — d(z, 7)),
Vz,y € X and Vt > 0. Define seif maps A and B as follows:
Ax={2—x, ifo<z<1, z, f0<zr<]l,
2, ifl1<z<?2, 2, f1<z<2
Take z, = 1 —1/n. Then Fa,,1(¢t) = H(t — (1/n)) and lim, o0 Faz,1(t) =
H(t) = 1. Hence Az, — 1 as n — oo. Similarly, Bz, — 1 as n — oco. Also
FABz,BAz,(t) = H(t — (1 — 1/n)) and lim,—,0o FaBz, BAz, (t) = H{t—1) # 1,
'Vt > 0. Hence the pair (A, B) is not compatible. But Faps, s, (t) = H(t ~
(2/n)) and limy—,o0 FABg., BBz, (t) = H(t) =1, Vt > 0. Hence the pair (A, B) is
compatible of type (P-1). Similarly, the pair (4, B) is compatible of type (P-2).

and Bzx = {

Next, we cite the following propositions which gives the condition under
which the Definitions 5, 7 and 8 becomes equivalent.

Proposition 2. Let A and B be self maps of a Menger space (X, F,*) with
continuous t-norm *x and t xt >t for all t € [0,1].
(i) If B is continuous then the pair (A, B) is compatible of type (P-1) if
and only if A and B are compatible.
(i) If A is continuous then the pair (A, B) is compatible of type (P-2) if
and only if A and B are compatible.
Proof. (i) Let {z,} be a sequence in X such that Az, Bx, — z for some z in
X as n — oo and let the pair (A, B) be compatible of type (P-1). Since B is

continuous, we have BAx, — Bz and BBz, — Bz. Therefore, by (PM-4), we
have

FABz,BAz,(t) > FABz,BBz,(t/2) * FBBs, BAz, (t/2) = 1x12>1

as n — 0o. Hence the mappings A and B are compatible.
Now, let A and B be compatible. Therefore, using the continuity of B, we
have

FABz,BBz,(t) > FaABz, BAz, (8/2) * FBAz, BBz, (t/2) = 1%x1>1

as n — oo. Hence the mappings 4 and B are compatible of type (P-1).
(ii) It is similar to the proof of (i). d
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Next, we give some properties of compatible mappings of type (P-1) and
type (P-2) which will be used in our main theorem.

Proposition 3. Let A and B be self maps of a Menger space (X, F, ). If the
pair (A, B) is compatible of type (P-1) and Az = Bz for some z in X, then
ABz = BBz.

Proof. Let {z,} be a sequence in X defined by z, = z for n € N and let
Az = Bz. Then we have Az, — Az and Bz, — Bz. Since the pair (4, B)
is compatible of type (P-1), we have Fap.5p.(t) = FaBz,BBz,.(t) — 1 as
n — 00. Hence ABz = BBz. 0

Proposition 4. Let A and B be self maps of a Menger space (X, F, ). If the
pair (A, B) is compatible of type (P-2) and Az = Bz for some z in X, then
BAz = AAz.

Proof. Tt is similar to the proof of Proposition 3. 0

Proposition 5. Let A and B be self maps of a Menger space (X, F,*) with
continuous t-norm x and t xt > t for all t € [0,1]. If the pair (A, B) is
compatible of type (P-1) and {x,} is a sequence in X such that Az,, Bz, — z
for some z in X as n — oo, then BBz, — Az if A is continuous at z.

Proof. Since A is continuous at z and the pair (A, B) is compatible of type

(P-1), we have ABx, — Az and Fapy, BBs, (t) — 1 as n — oo. Therefore
Fa:8B2,(t) > FaraB4,(t/2) * FABs, BBz, (8/2) = 1x12>1

as n — oo. Hence BBx,, — Az as n — oo. O

Prbposition 6. Let A and B be self maps of a Menger space (X, F,x) with

continuous t-norm * and t xt > t for all t € [0,1]. If the pair (A, B) is

compatible of type (P-2) and {zn} is a sequence in X such that Az,, Bz, — 2
for some z in X as n — oo, then AAx, — Bz if B is continuous at z.

Proof. Tt is similar to the proof of Proposition 5. o

4. Main results

Theorem 1. Let A, B, P,Q, S and T be self maps on a complete Menger space
(X, F,*) with continuous t-norm * and t xt > ¢, for all t € [0,1)], satisfying:

(8) P(X) C ST(X), Q(X) C AB(X),

(b) there exists a constant k € (0,1) such that

Fpequ(kt) > Faesry(t) * Fpeano(t) * FoyusTy(t)
*Fpasty(ot) * Foyapa((2 — a)t)
forallz,y € X,a € (0,2) and t >0,

(¢) AB=BA,ST=T8,PB=BP,QT =TQ,
(d) either P or AB is continuous,
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(e) the pairs (P,AB) and (Q,ST) are compatible of type (P-1) or type
(P-2).
Then A,B,P,Q,S and T have a unique common fixed point.
Proof. Let xzo be an arbitrary point of X. By (a), there exists z1,z2 € X
such that Pzg = STx; = 3o and Qz; = ABz; = yi. Inductively, we can

construct sequences {z,} and {yn} in X such that Pxz, = STxont1 = Yon
and Qzany1 = ABop 9 = yYont+1 forn=0,1,2,....

Step 1. By taking £ = Zon, ¥ = Tony1 for all t > 0 and o = 1 — ¢ with
q € (0,1) in (b), we have
FpuonQuanss (B8) = Fiyppyonys (kt)
> Fyon 1yan () * Fygnyan () * Fyanyiyan (8) % Fyanye, (1 - Q)t)
* Fyoniayen—i (14 9)1)
> Fypn 1y () * Fyon_ 10 (8) * Fyonyonsa () * 1% Fyp g5, ()
* Fyonyania (@)
> Fypn 1920 () * Fuanyanys () * Fyonyania (at)-

Since t-norm is continuous, letting ¢ — 1, we have

Fypryonia (kt) 2 Fyp 1920 (t) * Fypnyznia (t)-

Similarly, we also have

Fy2n+1'y2n+2 (kt) ->— Fy2ny2n+1 (t) * Fy2n+ly2n+2 (t)

In general, for all n even or odd, we have

Fynyuir (kt) = Fy, 1y () * Fy,y,a (t)-
Consequently, for p = 1,2,.. ., it follows that,

t
Fynyn+1 (kt) 2 Fyn—lyn (t) * Fynyn-l—l (E)

By noting that Fy,_, .. (&) — 1 as p — oo, we have

Fynyn+1 (kt) Z Fyn-lyn (t)

for k € (0,1), all n € N and ¢t > 0. Hence, by Lemma 1, {y,} is a Cauchy
sequence in X. Since (X, F, *) is complete, it converges to a point z in X. Also
its subsequences converge as follows: {Pza,} — z, {ABxan} — 2, {QT2n+1} —
z and {STzan+1} — 2.

Case 1. AB is continuous, and (P, AB) and (Q, ST are compatible of type
(P-1).

Since AB is continuous, AB(AB)z2, — ABz and (AB)Px2, — ABz. Since
(P, AB) is compatible of type (P-1), PPxzg, — ABz.
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Step 2. By taking z = Pxayn, ¥ = Zon+1 with o =1 in (b), we have
Fppay,Quonsy (Kt) 2 FaABPzo, STzanss () * FPP2yy ABPoan (8)* F Qo y 1 ST 011 (t)
*Fppry, STs0m 1 (1) * FQuanyy ABPas, (E)-
This implies that, as n — oo
Foap:(kt) > Foa:(t) * FApzaBz(t) * Foo{t) * Foap:(t) x Fzap:(t)
= Foap.{t)*1%x1% F,4p,(t) * F,ap:(t)
> Foaga(t).
Thus, by Lemma 2, it follows that z = ABz.
Step 3. By taking x = z, y = Tap+1 with o =1 in (b), we have
Fp:Quanii(kt) > FaB2STaon, () * FPzaB2(t) * FQusn 1 5Tz0n. (1)
*Fp25Tran 1 (t) * FQup, 1 aB2(1)-
This implies that, as n — oo
Fop (kt) > Fo ()% Fopa(t) » Foo(8) ¥ Fopo(t) * Foo(t)
= 1% Fop,(t) %1% Fyp,(t)x1
> Fops(t).
Thus, by Lemma 2, it follows that z = Pz. Therefore, z = ABz = Pz.
Step 4. By taking z = Bz, y = Z2,,1 with a = 1 in (b) and using (c), we
have
Fp(B2)Qzan.i (Ft) = Fap(B2)STagn. 1 (B) * Fp(B2)AB(B2) (1) * FQuaniy STa2011 (E)
* Fp(B2)8Tesn11 () * FQuap s AB(B2) (1)
This implies that, as n — oo
F.p.(kt) > F.p.(t)* Fp.Bz(t) * F..(t) * Fop.(t) * F.p.(t)
= F,p,(t)x1x1xF,g.(t)* F.p,(t)
> F.p.(t).

Thus, by Lemma 2, it follows that z = Bz. Since z = ABz, we have z = Az.
Therefore, 2 = Az = Bz = Pxz.

Step 5. Since P(X) C ST(X), there exists w € X such that z = Pz =
STw. By taking = 22y, y = w with a = 1 in (b), we have
Fpas.0wkt) > FaBus, sTw(t) * Fru,, ABran (t) * FQuwsTw(t)
#Fpg,, 57w (t) * FQuAB,, (t)
which implies that, as n — o
Foouw(kt) 2 Fo(t) % Fp(t) * Foqu(t) * Fop(8) * Fagu(t)

= 1x1xFouw(t) x1x F.ou(t)
> FzQw (t)
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Thus, by Lemma 2, we have z = Qw. Hence, STw = z = Qw. Since (@, ST)
is compatible of type (P-1), we have Q(ST)w = ST(ST)w. Thus, STz = Qz.

Step 6. By taking z = 2, y = 2z with a = 1 in (b) and using Step 5, we
have

pranZ (kt) 2 FABaIanTz (t) * FP:cznAme (t) * FQzSTz (t)
*Fpyy, 572 (t) * FQzABz,, ()

which implies that, as n — oo

Foga(kt) 2 FoQu(t) * Fouo(t) * FQaqx(t) * Faq. () * Fiq:(t)
= F,0.(t)x1x1%F,g,(t) * 1% F.0,(t)
> FzQz (t)
Thus, by Lemma 2, we have z = @z. Since 57z = Qz, we have z = ST=.
Therefore, z = Az = Bz = Pz = Qz = ST 2.

Step 7. By taking z = 72y, y = T2 with @ = 1 in (b) and using (c), we
have

Fpun@z)(kt) 2 FaBey,sT(T2)(8) * FPuy, ABzan (t) * FQrzysm (T2 (t)
*Fpg,. s7(72)(t) * FQ(T2)ABway (t)

which implies that, as n — oo

Fsz (kt) 2 Fsz(t) * Fzz (t) * FTsz (t) * Fsz (t) * Fsz (t)
= Fop,(t) %1 1% Fop () * 1% Fyp,(t)
2 Fsz (t)

Thus, by Lemma 2, we have z = Tz. .Since z = 5Tz, we have z = Sz.
Therefore, z = Az = Bz = Pz = Qz = Sz = Tz, that is, z is the common
fixed point of A,B,P,Q,S and T

Similarly, it is clear that z is also the common fixed point of A, B, P,Q, S
and T in the case AB is continuous, and (P, AB) and (Q, ST) are compatible
of type (P-2).

Case II. P is continuous, and (P, AB) and (Q, ST') are compatible of type
(P-1).

Since P is continuous, PPzy, — Pz and P(AB)z2, — Pz. Since (P, AB)
is compatible of type (P-1), AB(AB)z2n — Pz.

Step 8. By taking x = ABxy,, ¥y = 22,41 with a =1 in {b), we have

Fp(AB)22nQaonsi(Kt) 2 FAB(AB)z2nSTz2n11(t) * FP(AB)22n AB(AB)z2, ()
*FQ$2n+1 ST gn41 (t) * FP(AB)xanT$2n+1 (t)
*FQuan 11 AB(AB)2n ()-
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This implies that, as n — co

Fsz (kt) Z Fsz (t) * FPsz (t) * Fzz (7«‘) * Fsz (t) * Fsz (t}
= Fop(t)* 1% 1x Fop,(t)* F,p.(t)
Z Fsz(t)'
Thus, by Lemma 2, it follows that z = Pz. Now using Step 5-7, we have
2=Qz=8Tz=82="Tz.
Step 9. Since Q(X) C AB(X), there exists w € X such that z = Qz =
ABw. By taking z = w, y = Z2,41 with o =1 in (b), we have
FPwQ$2¢x+1 {kt) > FABWSTZzn+1 <t> * FPMAB’w(t) * szanSTwzn—H (t)
*FPwSTm2n+1 (t) * FQI2n+1AB’LU(t)

which implies that, as n — oo

Fsz(kt) Z Fz:(t) * Fopyw (t) * Fy, (t) * FzPu,)(t) *x F,, (t)
= 1% Fopy(t) % 1% Fypy(t) * 1
2 Fsz (t)
Thus, by Lemma 2, we have z = Pw. Since z = Qz = ABw, Pw = ABw.
Since (P, AB) is compatible of type (P-1), we have Pz = ABz. Also z = Bz
follows from Step 4. Thus, z = Az = Bz = Pz. Hence, z is the common fixed
point of the six maps in this case also.
Similarly, it is clear that z is also the common fixed point of A, B, P,Q, S

and T in the case P is continuous, and (P, AB) and (Q, ST) are compatible of
type (P-2).

Step 10. For uniqueness, let v (v # z) be another common fixed point of
A,B,P,Q,5 and T. Taking z = z, y = v with @ = 1 in (b), we have
FPsz(kt) > FABzSTv (t) * FPzASz (t) * FQ'{)ST’U (t>
*szgﬂ,(at) * FQvABz((z — a)t)
which implies that
Foy(kt) > Fop(t) % Fou(t) * Fup(t) * Fop(t) * Foy2(t)
= Fop(8) *x 1x 1% Fu{t) x Foplt)
> Fu(t).

Thus, by Lemma 2, we have z = v. This completes the proof of the theorem. [0

If we take A = B =8 =T = Ix (the identity map on X) in Theorem 1, we
have the following:

Corollary 1. Let P and Q be self maps on a complete Menger space (X, F, x)
with continuous t-norm * and txt > ¢ for allt € [0,1]. If there exists a constant
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k € (0,1) such that

Fpoqy(kt) > Fuy(t) * Fepa(t) * Fyoy(t)
*Fypg(at) * Fagy((2 — a)t)

forall z,y € X, € (0,2) and t > 0, then P and Q) have a unique common
fixed point.

In [17], Sehgal and Bharucha-Reid presented the probabilistic version of the
Banach contraction theorem as follows:

Corollary 2. Let P be a self map on a complete Menger space (X, F,*) with
continuous t-norm * and t xt >t for all t € [0,1]. If there exists a constant
k € (0,1) such that

Fpopy(kt) 2 Fay(t)
for allz,y € X andt > 0, then P has a unique fized point.

Proof. The proof follows from Corollary 1 since P=@Q and Fy,(t) =min{Fz,(t),
Fapa(t), Fyay(t), Fypa(t), Foqu(®)} =

Remark 3. In Theorem 1, Corollaries 1 and 2, the condition “the t-norm * is
continuous and ¢ xt > ¢ for all ¢ € [0,1]” can be replaced by the condition
“s %t = min{s, t} for all s,t € [0,1].”

Example 2. Let (X, d) be a metric space with the usual metric d where X =
[0,1] and (X, F,*) be the induced Menger space with Fgy(t) = H(t — d(z,))
for all z,y € X,t > 0. Clearly (X, F,*) is a complete Menger space where t-
norm * is defined by a * b = min {a, b} for all a,b € [0,1]. Let A, B, P,Q, S and
T be maps from X into itself defined as Az = z/5, Bz = z/3, Px = z/6,Qx =
0,8z = ,Tz = z/2 for all z € X. Then P(X) = [0,3] C [0,3] = ST(X)
andQ(X) = {0} c [0,&] = AB(X). Clearly, conditions (b), (c) and (d) of
the main Theorem are satisfied. Moreover, the pairs (P, AB) and (Q, ST) are
compatible of type (P-1). In fact, if limy_0o T, = 0, where {z,} is a se-
quence in X such that lim,_, o Pz, = lim,,—oo ABZn = 0 and lim, o Qz, =
limg, o0 STz, = 0 for some 0 € X, then HILIEOFP(AB)EnAB(AB)Zn @ =H@)=1

a,ndnlin;<j F(AB)Pz, PPz, (t) = H(t) = 1. Similarly, the pairs (P, AB) and (Q, ST)

are also compatible of type (P-2). Thus, all conditions of the main Theorem
are satisfied and 0 is the unique common fixed point of A, B, P,Q,S and T.
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