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Abstract

Park, Park and Kwun[6] is defined the intuitionistic fuzzy metric space in which it is a little revised from Park[5].
According to this paper, Park, Kwun and Park[11] Park and Kwun[10], Park, Park and Kwun[7] are established some
fixed point theorems in the intuitionistic fuzzy metric space. Furthermore, Park, Park and Kwun[6] obtained common
fixed point theorem in the intuitionistic fuzzy metric space, and also, Park, Park and Kwun[8] proved common fixed
points of maps on intuitionistic fuzzy metric spaces. We prove a fixed point for pair of maps with another method from
Park, Park and Kwun[7] in intuitionistic fuzzy metric space defined by Park, Park and Kwun[6]. Our research are an
extension of Vijayaraju and Marudai’s result[14] and generalization of Park, Park and Kwun([7], Park and Kwun[10].
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1. Introduction

Grabiec [1], Park and Kim[9] are studied a fixed point
theorem in a fuzzy metric space. Also, Mishra, Shrama
and Singh[4], Subrehmanyam[13] are proved a common
fixed point theorem in fuzzy metric spaces. Vijayaraju and
Marudai[14] obtained fixed point for pair of maps in fuzzy
metric spaces.

Recently, Park[5] is defined the intuitionistic fuzzy
metric space, and Park, Park and Kwun[6] is defined the in-
tuitionistic fuzzy metric space in which it is a little revised
from Park[5]. According to this paper, Park, Kwun and
Park{11] Park and Kwun[10], Park, Park and Kwun[7] are
established some fixed point theorems in the intuitionistic
fuzzy metric space. Furthermore, Park, Park and Kwun[6]
obtained common fixed point theorem in the intuitionis-
tic fuzzy metric space, and also, Park, Park and Kwun[8]
proved common fixed points of maps on intuitionistic fuzzy
metric spaces.

In this paper, we prove a fixed point for pair of maps
in intuitionistic fuzzy metric spaces. Our research are an
extension of Vijayaraju and Marudai’s result[14] and gen-
eralization of Park, Park and Kwun{7], Park and Kwun[10].

2. Preliminaries

We will give some definitions, properties and nota-
tion of the intuitionistic fuzzy metric space following by
Schweizer and Sklar[12], Grabiec[1] and Park, Park and
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Kwun[6].

Definition 2.1. ([12]) A operation * : [0, 1]x[0,1] — [0,1]
is continuous ¢—norm if * is satisfying the following con-
ditions:

(a) * is commutative and associative,

(b) * is continuous,

(© ax1=aforalla € [0,1],

(d) a*xb < c¢c*d whenever a < cand b < d
(a,b,c,d €[0,1]).

Definition 2.2. ([12]) A operation ¢ : [0, 11x{0,1] — [0, 1]
is continuous t—conorm if ¢ is satisfying the following
conditions:

(a) ¢ is commutative and associative,

(b) ¢ is continuous,

(©) aol=aforalla€[0,1],

(d aob > cod whenever a < cand b < d
(a,b,e,d €[0,1]).

Remark 2.3. ([5]) The following conditions are satisfied :
(a) For any r1,72 € (0,1) with 7y > ro, there exist
r3,74 € (0,1) such thatry x 73 > rgand ryp 07y < 71y.
(b) For any 75 € (0, 1), there exist rg, 77 € (0,1) such
that rg x rg > rs and r7 o r7 < 5.

Definition 2.4. ([6]) The 5—tuple (X, M, N, ,¢) is said to
be an intuitionistic fuzzy metric space if X is an arbitrary
set, x is a continuous t—norm, ¢ is a continuous t—conorm
and M, N are fuzzy sets on X2 x (0, 00) satisfying the
following conditions; for all z, y, z € X, such that

159



International Journal of Fuzzy Logic and Intelligent Systems, vol. 7, no. 3, September 2007

(@) M(z,y,t) >
© M(r v, )—M(y,w t)
d) M(z,y,t)* M(y,z,s) < M(z, 2,1+ s),

(e) M(z,y,-): (0,00) — (0,1] is continuous,

) N(z,y,7) >0,

(8 N(z,y,t) =0 =z =y,

(h) N(z,y,t) = N(y, z,1),

() N(z,y,t)oN(y,z,8) > N(z,2,t + s),

(G) N(z,y,-) : (0,00) — (0,1] is continuous.

Then (M, N) is called an intuitionistic fuzzy metric on
X. The functions M (z,y,t) and N(z,y,t) denote the de-
gree of nearness and the degree of non-nearness between z
and y with respect to ¢, respectively.

Remark 2.5. ([11]) In an intuitionistic fuzzy metric
space (X, M,N,x,0), M(z,y, -) is nondecreasing and
N(z, y, -) is nonincreasing for all z, y € X.

Throughout the paper, we shall use N to denote the set
of natural numbers and X to denote an intuitionistic fuzzy
metric space (X, M, N, x, o) with the following properties:

im M(z,y,t) =1,
t—o0

Definition 2.6. ([10]) Let X be an intuitionistic fuzzy met-
ric space.

(@ A sequence {z,} in a X is called
Cauchy sequence iff lim, oo M(Zpip,2n,t) = 1,
limy, 0o N(Zptp,Zn,t) = 0foreachp € N, ¢ > 0.

(b) A sequence {z, } in a X is convergent to z in X iff
limy oo M(zp,x,t) = 1, lim, 0o N(zp,z,t) = 0 for
eacht > 0.

(c) X is said to be complete if every Cauchy sequence
in X is convergent in X.

Lemma 2.7. ([10]) Let {x,, } be a sequence in an intuition-
istic fuzzy metric space X . If there exists a positive number
k,0 < k < 1 such that
]\/[(mn-i-% Tn+1, kt)

> M(xn+17 Tn, t),
N($n+2; $n+17 kt) S

N(zpg1,2n,t), t>0, neN.
Then {z, } is a Cauchy sequence.

Lemma 2.8. ([10]) If z,y are any two points in an intu-
itionistic fuzzy metric space X and k is a positive number
with £ < 1, and

M(z,y, kt) > M(z,y,1),

then x = y.

N(z,y,kt) < N(z,y,t),

Lemma 2.9. ([10]) Let X be a complete intuitionistic
fuzzy metric space and T be a self map of X satisfying

M(Tz, Ty, kt) > M(z,y,t), N(Tz, Ty, kt) < N(z,y,t)

forall z,y € X and 0 < k < 1. Then T has a unique fixed
point in X.
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tlim N(z,y,t) =0 forallz,y € X.

3. Main Results

In this section, we prove a fixed point for pair of
maps with another method from Park, Park, Kwun[7] in
intuitionistic fuzzy metric space defined by Park, Park,
Kwun[6]. Our research are an extension of Vijayaraju,
Marudai’s result[14] and generalization of Park, Park,
Kwun([7], Park, Kwun[10].

Lemma 3.1. ([10]) Let {z,,} is a sequence in an intuition-
istic fuzzy metric space X. If

t
M(zy, Tpq1,t) > M(zo, 1, E)’

t
N(zp, Tny1,t) < N(zg, 21, E)’

where « is a positive number with 0 < o < 1 and n € N,
then {z,,} is a Cauchy sequence.

Lemma 3.2. ([10]) If X is an intuitionistic fuzzy metric
space and {z,, } is a sequence in X such that

M(zi41,%iq2, kt)
N(xi—i-la Tit2, kt)

> M(zi,wi41,t) ¥ M(241, Tigo, t)
< N(@i, i1, t) © N(Tiy1, Tiga, t),

where 0 < k < 1,¢=0,1,2,--- and ¢ > 0, then
M (241, Tiq2, kt)

2 M(:L‘i)wi—‘rlat)
N(®ip1,zi00,kt) <

N(zi, xiq1,1).

Theorem 3.3. Let X be a complete intuitionistic fuzzy
metric space. If T, .S are self maps on X such that

M(Tz, Sy, Bt)
N(Tz, Sy, Bt)

> M(z,Tx,t) * M(y, Sy,t)
< N(z,Tz,t)o N(y, Sy,t)

forall z,y € X and 0 < B < 7, then T and S have a
unique common fixed point in X.

Proof. Let zy € X be fixed .
{zn} € X by

We define a sequence

Tz, if niseven
Sz, if nis odd.

Tn+l =

Now, we will prove that M(mn,xn+1,( 5t >
M (zo,z1,t) and N(xn,xn+1,( )”t) < N(xo,xl,t)



M(mlamQa(l—ﬁﬁ)t)
t
= M(Tito,sxl,ﬂm)
> M(wo, 21, ——) % M(z1, 00, ——)
2 $o,$1,1_ﬂ 351737271_6
> M(wo,xl,ﬁ), (by Lemma3.2)
> M(zg,21,t), (because of 1fﬁ > t),
N(xl’x%(l_—%)t)
i
= N(T$o75$17ﬁ1—_‘ﬁ)
< N(wo, 1, ——) o N(wr, 22, ——)
> mOy‘Tlal_lB T1, 2,1_5
t
< N(moﬁfvlym)
< N(zg,z1,t), (because of 1f,8 > t).

Thus the result is true for n = 1.

Suppose that the result is true for n = k, that is,

M2k, Tosn, (%)kt) > M(xo, 71, 1)

B

m)’“t) < N(zg,x1,1).

N(zg, zg41, (

Without loss of generality, let us assume that k is even,

M (o1, osa, (2 )FH18)

1-p

= ]V[(Txkvsxk-i-lwg(%
B

t

%

M(Ika Ik+17 (

*M(Ik+1,ﬂfk+2, (%)k N —)ﬂ

N(Zrt1, T2, ( )

B
1-p5
_ Bk
= N(kaasxkﬁ-l’ﬁ(l___ﬁ) )
t

Bk
m) 'm)

ON (241, Tryo, (—

IA

N(zp, Ty, (
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Then by Lemma 3.2, we have

Ry
1—_—6) +1t)

M(zkq1, Trto, (

v

M (2, 2E 41, (

Vv

M(xlka-i—l?(

v

M(iCo,l'l,t),

N(Zrt1, T2, (%)Hlt)

IN

N(zg, Tr41, (

Bk
1-8 '1-8

IA

B
N _~

(xkyxk—l-la ( 1 — ﬁ

S N(x07 X1, t)

Hence the result is true for all n. Therefore
2yt > M(zo,a1,8)
1-48 - ’
—ﬁ )nt) < N($0,$1,t),
1-73 -

M(w’n.’xn-}-l?(
N(mn,$n+1, (

which can be written as

—
!
™

M(xnaxn-i-lat) Z M($0,$1, (—“)nt)’

1 -
N(.’L‘n,.Tn+1,t) S N(x()?xla (—ﬁ

By Lemma 3.1, {z,} is a Cauchy sequence in X. Since X
is complete, {x, } converges to a point z in X. That is,

lim M(xzn,,z,t) =1, lim N(zn,z,t) =0.

00 n—0o0

Now, by Definition 2.3 and assumption of this theorem

M(z,Tz,t)

> M(x,xn,%)*M(xn,Tm,%)

_ A“%LMQ*AKSLHLTL%)

> M(z,z,, %) * M(x, T, 2—%) * M(Zy—1,Tn, %),
N(z,Txz,t)

< N(x,xn,%)oN(xn,Tm,%)

- N(;g,xn,-;-)oN(Smn_l,Tx,%)

< N(a:,xn,%)ON(%TI’é)ON(%—hxm%>'

Taking limit as n — oo, we get
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t
M(x,Tz,t) > 1*M(w,Tx,%)*1
t
= M(.’E,T.T,%),
N(z,Tz,t) < OoN(x,Tx,é%)oO
t
= N(x,Tzx,—).
(.’L’, il:72ﬂ)

Bylemma 29, Tz = z.

Similarly, Sz = z.

Now, we will show that z is a unique common fixed
point of T"and S in X.

Assume that there exist another fixed point % in
X(Ty = Sy = y). Then

M(z,y.t) = M(Tz,Sy,1)
t {
> Mz, Tx,=)*M(y,Sy,=) =1,
> M( ﬁ) (y, Sy ﬁ)
N(z,y,t) = N(Tz,Sy,t)
t t
< N(z,Tz,—-)oN(y,Sy,—)=0.
< N ﬁ) (y, Sy ﬂ)

Therefore M (z,y,t) = 1 and N(z,y,t) = 0. Hence
z = y. Thus z is a unique common fixed point of 7" and S
in X. d

Corollary 3.4. ([10]) If T is a self map on a complete intu-
itionistic fuzzy metric space X and if there exists a positive
number § with 0 < 8 < % such that

M(Tz, Ty, Gt)
N(Tz, Ty, Bt)

M(z,Tz,t) « M{y,Ty,t),

>
< N("E,Tx7t)<>N(y7Tyat)

forall z,y € X and ¢ > 0, then T has a unique fixed point
in X.

Proof. The proof follows immediately from Theorem 3.3
by putting T’ = S. O

Theorem 3.5. Let X be a complete intuitionistic fuzzy
metric space. Also, let 7" and S be two self maps on X
such that

@M (Tz, Sy,at) 2 M(z,y,1), N(Tz,Sy,at) <
N(z,y,t),where0 < a<l,z,yec X,z #£y,

(b)S is a contraction on X. That is, there exists
B with 0 < f < 1 such that M(Sz,Sy,pt) >
M(z,y,t), N(Sz,Sy,pt) < N(z,y,t)forall z,y € X,
and

(c)there exists g € X such that

Tz, if niseven
Sz, if nisodd

Tp+1 =
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with z,,, # @ if m # L.
Then T" and S have a unique common fixed point in X.

Proof. If z1, 2 are two distinct points in X, then it is im-
possible that Tz; = x; and Szo = z5. Forif Tz = 21
and Sz, = x2, then by (a),

M(z1,z9,at) = M(Txzy, Sz, at) > M(z1,70,1),
N(z1,22,at) = N(Tzy,Sz2,0at) < N(z1,T2,1).
This is a contradiction from Remark 2.5. Since S is con-
traction, .S has a unique fixed point say z in X from Lemma
2.9. Therefore if T has a fixed point, it is unique and must
coincide with z. If x¢g = 21, since x1 = Txg = g = Sz,
assume that zq # z1. Let 21, z2 be any two members of

{z,,} defined by (c). Then from (a),

t
M(.’L‘]_,H?Q,t) Z M(.’L'(),.’Ill, _)a
«
t
N(.’El,.Z'Q,t) S N(anxh E)
Similarly, from

M($2,$3,0ét) = M(Sl']_,TCEQ,OZt) Z M(.Tl,fEQ,t),
N(zg,x3,at) = N(Sz1,Txo, at) < N(z1,T2,1),

we have
i
M(CL‘Q,.’E?,,t) = M(le,Txg,at) ZM(.To,.Tl,—2),
87
t
N(x2;$37t) = N(SZ‘l,TﬁEQ,O[t) SN(anxlag))
t
M (2, Tny1,t) > M(zo, 1, 5),
t

N(wnaanrlat) S N(:EOaxla_)'
am

Hence by Lemma 3.1 and Lemma 2.7, {z,} is a Cauchy
sequence. Since X is complete, it converges to g in X.
Therefore it satisfied the Definition 2.6(b).

Suppose that n is even integer. Then

t t
M(yOaTyOat) Z M(yO)x’VL)E)*M(xanyOa-)

2
t t
= M(yo,xn,i)*M(S’xn_l,Tyo,E)
t t
> M ny o M -1, i
= (o, 2)* (@n-1, %0 2a)
t t
N(y()vaO’t) S N(yOaxnai)ON(ajn)TyOai)
t t
= N(y07mn75)0N(an—1aTy07§)
t t
< N ny oy N —1,90, 5 /-
< (Yo, = 2)0 (Tn-1,Y0 Qa)

Taking limit as n — oo, we get
M(yo,Tyo,t) > 11 =1, N(yo,Tyo,t) <0x0=0.

Thus yo = Tyo. We know that yq is a fixed point of 7"
Therefore yp = «. Hence T and S have a unique common
fixed point in X. O
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Corollary 3.6. ([7]) (Intuitionistic fuzzy Banach contrac-
tion theorem) Let X be a complete intuitionistic fuzzy met-
ric space and T : X — X be a mapping satisfying

M(Tz, Ty, at) > M(z,y,1),

where 0 < a« < 1, z,y € X andall¢ > 0. Then T has a
unique fixed point in X.

Proof. We proved this corollary from Theorem 3.5 by
putting 7' = S. Also, in this proof, we used another method
with respect to [7]. O

4. Example

Example 4.1. Let (X, d) be a metric space in X = [0, 1].
Denote = * y = min{z,y}, z ¢ y = max{z,y} for all

z,y € X and let My, N4 be fuzzy sets on X2 x (0, 00) as
follows:
d(z,y)
My(z,yt) = ——— Nylz,y,t) = —BY)
den) t+d(z,y) o) t+d(z,y)

where for any z,y € X, ¢ > 0, d(z,y) = |z — y|.

Define maps 7,5 : X — X byTz = 1 — =z,
Sz =2 — % forall z € X. Then (X, Mg, Ny, *,0) is
an intuitionistic fuzzy metric space.

Also,

t t
My(S = =
4(52, 5y, 1) t+d(Sz,Sy) t+ —21—|y—:z:|
t
= Md($7y7z)7

t

m 3
d(Sz,5y) 3y —al

t+d(Sz,Sy)  t+ 3|y — 2
2y — = t

= Nd(a:;yv _)
t+ 2|y -z 2

Nu(Sz,Sy,t) =

Clearly, T(3) = 3 = S(3) and 1 is the only fixed
point of both T"and S in X.
But since
t
t+4—z+ 1)
yoaod

t+ | —z+ 5

My(Tz, Sy, t) =
Ny(Tz, Sy, t)

Ifz = %,y: %,then

t

Md(Tx7Sy7t) = = ]\{[d(xayvt)u

<~
[ SIS +
N

Nd(TIa Sy7t)

I

= N(z,y,t).

o~
_.|_
NI

N(Tz,Ty,at) < N(z,y,t)

Hence we can know that Theorem 3.5 gives only some
sufficient conditions for which 7" and S have a common
unique fixed point in X.
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