• Title/Summary/Keyword: functional boundary value

Search Result 47, Processing Time 0.025 seconds

POSITIVE SOLUTIONS FOR MULTI-POINT BOUNDARY VALUE PROBLEM OF FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Wang, Haihua
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.147-160
    • /
    • 2012
  • In this paper, we establish some sufficient conditions for the existence of positive solutions for a class of multi-point boundary value problem for fractional functional differential equations involving the Caputo fractional derivative. Our results are based on two fixed point theorems. Two examples are also provided to illustrate our main results.

BIFURCATION PROBLEM FOR THE SUPERLINEAR ELLIPTIC OPERATOR

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.333-341
    • /
    • 2012
  • We investigate the number of solutions for the superlinear elliptic bifurcation problem with Dirichlet boundary condition. We get a theorem which shows the existence of at least $k$ weak solutions for the superlinear elliptic bifurcation problem with boundary value condition. We obtain this result by using the critical point theory induced from invariant linear subspace and the invariant functional.

FUNCTIONAL ITERATIVE METHODS FOR SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS

  • Lim, Hyo Jin;Kim, Kyoum Sun;Yun, Jae Heon
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.733-745
    • /
    • 2013
  • In this paper, we first propose a new technique of the functional iterative methods VIM (Variational iteration method) and NHPM (New homotopy perturbation method) for solving two-point boundary value problems, and then we compare their numerical results with those of the finite difference method (FDM).

ON PERIODIC BOUNDARY VALUE PROBLEMS OF HIGHER ORDER NONLINEAR FUNCTIONAL DIFFERENCE EQUATIONS WITH p-LAPLACIAN

  • Liu, Yuji;Liu, Xingyuan
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.29-40
    • /
    • 2009
  • Motivated by [Linear Algebra and its Appl. 420(2007), 218-227] and [Linear Algebra and its Appl. 425(2007), 171-183], we, in this paper, study the solvability of periodic boundary value problems of higher order nonlinear functional difference equations with p-Laplacian. Sufficient conditions for the existence of at least one solution of this problem are established.

An Existence Result for Neumann Type Boundary Value Problems for Second Order Nonlinear Functional Differential Equation

  • Liu, Yuji
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.637-650
    • /
    • 2008
  • New sufficient conditions for the existence of at least one solution of Neumann type boundary value problems for second order nonlinear differential equations $$\array{\{{p(t)\phi(x'(t)))'=f(t,x(t),\;x(\tau_1(t)),\;{\cdots},\;x(\tau_m(t))),\;t\in[0,T],\\x'(0)=0,\;x'(T)=0,}\,}$$, are established.

FRACTIONAL DIFFERENTIAL EQUATIONS WITH NONLOCAL BOUNDARY CONDITIONS

  • Soenjaya, Agus L.
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.497-502
    • /
    • 2022
  • Existence and uniqueness for fractional differential equations satisfying a general nonlocal initial or boundary condition are proven by means of Schauder's fixed point theorem. The nonlocal condition is given as an integral with respect to a signed measure, and includes the standard initial value condition and multi-point boundary value condition.

FOURTH ORDER ELLIPTIC BOUNDARY VALUE PROBLEM WITH SQUARE GROWTH NONLINEARITY

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.323-334
    • /
    • 2010
  • We give a theorem for the existence of at least three solutions for the fourth order elliptic boundary value problem with the square growth variable coefficient nonlinear term. We use the variational reduction method and the critical point theory for the associated functional on the finite dimensional subspace to prove our main result. We investigate the shape of the graph of the associated functional on the finite dimensional subspace, (P.S.) condition and the behavior of the associated functional in the neighborhood of the origin on the finite dimensional reduction subspace.

EXISTENCE OF THREE WEAK SOLUTIONS FOR A CLASS OF NONLINEAR OPERATORS INVOLVING p(x)-LAPLACIAN WITH MIXED BOUNDARY CONDITIONS

  • Aramaki, Junichi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.3
    • /
    • pp.531-551
    • /
    • 2021
  • In this paper, we consider a mixed boundary value problem to a class of nonlinear operators containing p(x)-Laplacian. More precisely, we consider the problem with the Dirichlet condition on a part of the boundary and the Steklov boundary condition on an another part of the boundary. We show the existence of at least three weak solutions under some hypotheses on given functions and the values of parameters.

ELLIPTIC BOUNDARY VALUE PROBLEM WITH TWO SINGULARITIES

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.9-21
    • /
    • 2018
  • We investigate existence and multiplicity of the solutions for elliptic boundary value problem with two singularities. We obtain one theorem which shows that there exists at least one nontrivial weak solution under some conditions on which the corresponding functional of the problem satisfies the Palais-Smale condition. We obtain this result by variational method and critical point theory.