References
- M. Allaoui, A.R. El Amorousse and A. Ourraoui, Existence and multiplicity of solutions for a Steklov problem involving the p(x)-Laplace operator, Electron. J. Diff. Eqs., 132 (2012), 1-12.
- J. Aramaki, Existence of weak solutions for a nonlinear problem involving p(x)-Laplacian operator with mixed boundary problem, submitted.
- J. Aramaki, Existence of weak solution for a class of abstract coupling system associated with stationary electromagnetic system, Taiwanese J. Math., 22(3) (2018), 741-765. https://doi.org/10.11650/tjm/180203
- J. Aramaki, Existence of weak solutions to stationary and evolutionary Maxwell-Stokes type problems and the asymptotic behavior of the solution, Adv. Math. Sci. Appl., 28(1) (2019), 29-57.
- J. Aramaki, Existence and regularity of a weak solution to a class of systems in a multi-connected domain, J. Partial Diff. Eqs., 32(1) (2019), 1-19.
- M. Avci, Existence and multiplicity of solutions for Dirichlet problems involving the p(x)-Laplace operator, Electron. J. Diff.l Eqs., 14 (2013), 1-9.
- A. Ayoujil, Existence results for Steklov problem involving the p(x)-Laplacian, Complex Var. and Elliptic Equ., 63 (2017), 1675-1686. https://doi.org/10.1080/17476933.2017.1403425
- F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Springer, Yew York, Heidelberg, Dordrecht, London (2013).
- S.G. Deng, Existence of the p(x)-Laplacian Steklov problem, J. Math. Anal. Appl., 339 (2008), 925-937. https://doi.org/10.1016/j.jmaa.2007.07.028
- L. Diening, Theoretical and numerical results for electrorheological fluids, ph. D. thesis, University of Frieburg, Germany 2002.
- L. Diening, P. Harjulehto, P. Hasto and M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lec. note in Math. Springer, 2011.
- X.L. Fan, Solutions for p(x)-Dirichlet problems with singular coefficients, J. Math. Anal. Appl., 312 (2005), 749-760.
- X.L. Fan and Q.H Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852. https://doi.org/10.1016/S0362-546X(02)00150-5
- X.L. Fan and D. Zhao, On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
- X.L. Fan, Q. Zhang and D. Zhao, Eigenvalues of p(x)-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2015), 306-317. https://doi.org/10.1016/j.jmaa.2003.11.020
- T.C. Halsey, Electrorheological fluids, Science, 258 (1992), 761-766. https://doi.org/10.1126/science.258.5083.761
- C. Ji, Remarks on the existence of three solutions for the p(x)-Laplacian equations, Nonlinear Anal., 74 (2011), 2908-2915. https://doi.org/10.1016/j.na.2010.12.013
- O. Kovacik and J. Rakosnic, On spaces Lp(x)(Ω) and Wk,p(x)(Ω). Czechoslovak Math. J., 41(116) (1991), 592-618. https://doi.org/10.21136/CMJ.1991.102493
- M. Mihailescu and V. Radulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. Royal Soc. A., 462 (2006), 2625-2641. https://doi.org/10.1098/rspa.2005.1633
- B. Ricceri, A further three critical points theorem, Nonlinear Anal., 71 (2009), 4151-4157. https://doi.org/10.1016/j.na.2009.02.074
- M. Ruzicka, Electrotheological fluids: Modeling and Mathematical Theory, Lec. note in Math., Vol. 1784, Berlin, Springer-Verlag, 2000.
- Z. Wei and Z. Chen, Existence results for the p(x)-Laplacian with nonlinear boundary condition, Appl. Math., (2012), Article ID 727398.
- Z. Yucedag, Solutions of nonlinear problems involving p(x)-Laplacian operator, Adv. Nonlinear Anal., 4(4) (2015), 1-9. https://doi.org/10.1515/anona-2014-0026
- Z. Yucedag, Existence results for Steklov problem with nonlinear boundary condition, Middle East J. of Sci., 5(2), (2019), 146-154. https://doi.org/10.23884/mejs.2019.5.2.06
- E. Zeidler, Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators, Springer-Verlag, Now York, Berlin, Heidelberg, London, Paris, Tokyo, 1986.
- D. Zhao, W.J. Qing and X.L. Fan, On generalized Orlicz space Lp(x)(Ω), J. Gansu Sci., 9(2) (1996), 1-7.
- V.V. Zhikov, Averaging of functionals of the calculus of variation and elasticity theory, Math. USSR, Izv., 29 (1987), 33-66. https://doi.org/10.1070/IM1987v029n01ABEH000958