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POSITIVE SOLUTIONS FOR MULTI-POINT BOUNDARY

VALUE PROBLEM OF FRACTIONAL FUNCTIONAL

DIFFERENTIAL EQUATIONS†

HAIHUA WANG

Abstract. In this paper, we establish some sufficient conditions for the
existence of positive solutions for a class of multi-point boundary value
problem for fractional functional differential equations involving the Ca-
puto fractional derivative. Our results are based on two fixed point theo-
rems. Two examples are also provided to illustrate our main results.
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1. Introduction

The purpose of this paper is to investigate the existence of positive solutions
for the boundary value problems, for fractional order functional differential equa-
tions: 




Dα
0+x(t) = f(t, x(θ(t))), t ∈ (0, 1),

x(t) + ax′(t) = φ(t), t ∈ [−r, 0],

x(1) + bx′(1) +
∑m−2

i=1
ciD

βi

0+x(ξi) = 0,

(1)

where 1 < α < 2, 0 ≤ βi ≤ α−1, i = 1, 2, · · · ,m−2, r ≥ 0 are real numbers and

Dα
0+, D

βi

0+ are the Caputo fractional derivatives, f : [0, 1]× [0,+∞) → [0,+∞)
is a given function, θ(t) ≤ t with sup0≤t≤1 θ(t) > 0 and φ ∈ C([−r, 0], (−∞, 0])
with φ(0) = 0, 0 = ξ0 < ξ1 < ξ2 < · · · < ξm−2 < ξm−1 = 1, a ≥ 1, b ≥ 0, ci ≥ 0

satisfy 1 +
∑m−2

i=1 ci
1

Γ(2−βi)
ξi

1−βi + b− a > 0.

In recent years, the theory of fractional differential equations has played an
important role in different research areas, such as engineering, physics, chem-
istry, signal analysis, etc. Applied problems require definitions of fractional
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derivatives allowing the utilization of physically interpretable boundary condi-
tions. Caputo’s fractional derivative satisfies these demands. There has been
a significant development in the study on existence of solution, positive solu-
tion of differential equations involving fractional derivatives(see, for example,
[1, 2, 3, 8, 9, 10, 5], and references therein).

In [11], Zhang considered the boundary value problem of fractional order{
Dα

0+x(t) = f(t, x(t)), 1 < α ≤ 2, t ∈ (0, 1),

x(0) + x′(0) = 0, x(1) + x′(1) = 0,
(2)

where f : [0, 1]× [0,+∞) → [0,+∞) is a continuous function. In [11], the exis-
tence of positive solutions were studied via cone-theoretic techniques. Inspired
by the work of Zhang’s paper, the aim of the present paper is to establish some
simple criteria for the existence of positive solutions of the probelm(1). It is
worth noting that (2) is the special case of (1). Tools used in this paper are
two fixed point theorems on cone. This paper is organized as follows. In sec-
tion 2, we present some preliminary results and lemmas needed in the following
sections. Section 3 will be concerned with the existence results of positive solu-
tions for problem (1). The last section is devoted to examples illustrating the
applicability of problem (1).

2. Preliminaries and Lemmas

Definition 2.1 ([6]). The fractional integral of order α for a function f ∈ L1[a, b]
is defined by

Iαa+f(t) =

∫ t

a

(t− s)α−1

Γ(α)
f(s)ds, α > 0.

When a = 0, we write Iαf(t).

Definition 2.2 ([6]). For a function f : [a, b] → R, the Caputo derivative of
fractional order α > 0 is defined by

Dα
a+f(t) =

1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds, n = [α] + 1.

Definition 2.3 ([6]). For a function f : [a, b] → R, the Riemann-Liouville
derivative of fractional order α > 0 is defined by

Dα
a+f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1f(s)ds, n = [α] + 1.

Definition 2.4. The map β is said to be a nonnegative continuous concave
functional on cone P provided that β : P → [0,+∞) is continuous and

β(tx+ (1− t)y) ≥ tβ(x) + (1− t)β(y), x, y ∈ P, t ∈ [0, 1].

Lemma 2.1 ([6]). Let α > 0, then

Iαa+D
α
a+x(t) = x(t)−

n−1∑

k=0

x(k)(a)

k!
(t− a)k, for some ck ∈ R, n = [α] + 1.
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Theorem 2.2 ([4]). Suppose that E is a Banach space, P ⊂ E is a cone.
Let Ω1,Ω2 be two bounded open sets in E and θ ∈ Ω1,Ω1 ⊂ Ω2. Let T :
P ∩ (Ω2\Ω1) → P be completely continuous. Suppose that one of the following
two conditions holds:

(A1) ‖Tx‖ ≤ ‖x‖,∀x ∈ P ∩ ∂Ω1, ‖Tx‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂Ω2;
(A2) ‖Tx‖ ≥ ‖x‖,∀x ∈ P ∩ ∂Ω1, ‖Tx‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂Ω2.

Then T has at least one fixed point in P ∩ (Ω2\Ω1).

Theorem 2.3 ([7]). Let P be a cone in a real Banach space E, Pc = {x ∈
P |‖x‖ < c}, β is a nonnegative continuous concave functional on P such that
β(x) ≤ ‖x‖, for all x ∈ P c and P (β, b, d) = {x ∈ P |b ≤ β(x), ‖x‖ ≤ d}. Suppose
that T : P c → P c is completely continuous and there exist positive constants
0 < a < b < d ≤ c such that

(I) {x ∈ P (β, b, d) | β(x) > b} 6= ∅ and β(Tx) > b for x ∈ P (β, b, d);
(II) ‖Tx‖ < a for x ∈ P a;
(III) β(Tx) > b for x ∈ P (β, b, c) with ‖Tx‖ > d.

Then T has at least three fixed points x1, x2, x3 satisfying ‖x1‖ < a, b < β(x2),
and a < ‖x3‖ with β(x3) < b.

Lemma 2.4. Assume that σ ∈ L1[0, 1], 1 < α < 2, 0 ≤ β ≤ α − 1, a ≥ 0 are
constants, then

Dβ
a+

(
Iαa+σ(t)

)
= Iα−β

a+ σ(t) (3)

and

Dβ
a+t =

(t− a)1−β

Γ(2− β)
. (4)

Proof. Since (Iαa+σ(t))
′ = D1

a+I
α
a+σ(t) = D1

a+I
1
a+I

α−1
a+ σ(t) = Iα−1

a+ σ(t), one has

Dβ
a+

(
Iαa+σ(t)

)
=

1

Γ(1− β)

∫ t

a

(t− s)−β 1

Γ(α− 1)

∫ s

a

(s− r)α−2σ(r)drds

=
1

Γ(1− β)Γ(α− 1)

∫ t

a

σ(r)dr

∫ t

r

(t− s)−β(s− r)α−2ds

=

∫ t

a
(t− r)α−β−1σ(r)dr

∫ 1

0
xα−2(1− x)−βdx

Γ(1− β)Γ(α− 1)

=
B(α− 1, 1− β)

∫ t

a
(t− r)α−β−1σ(r)dr

Γ(1− β)Γ(α− 1)

= Iα−β
a+ σ(t),

(5)

and

Dβ
a+t =

1

Γ(1− β)

∫ t

a

(t− s)−βds =
(t− a)1−β

Γ(2− β)
. (6)

The proof is complete. ¤
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Lemma 2.5. For a given σ ∈ C[0, 1], then problem



Dα
0+x(t) = σ(t), 1 < α < 2, t ∈ (0, 1),

x(0) + ax′(0) = 0, x(1) + bx′(1) +
∑m−2

i=1
ciD

βix(ξi) = 0,
(7)

has a unique solution x given by

x(t) =

∫ 1

0

G(t, s)σ(s)ds, (8)

where

G(t, s) =
1

∆





gi0(t, s) =
∆(t−s)α−1+(a−t)(1−s)α−1

Γ(α) + b(1−s)α−2(a−t)
Γ(α−1)

+
∑m−2

j=i+1
cj(ξj−s)α−βj−1(a−t)

Γ(α−βj)
,

ξi ≤ s ≤ min{t, ξi+1}, i = 0, 1, · · · ,m− 3,

gi1(t, s) =
(a−t)(1−s)α−1

Γ(α) + b(1−s)α−2(a−t)
Γ(α−1)

+
∑m−2

j=i+1
cj(ξj−s)α−βj−1(a−t)

Γ(α−βj)
,

max{t, ξi} ≤ s ≤ ξi+1, i = 0, 1, · · · ,m− 3,

gm−20(t, s) =
∆(t−s)α−1+(a−t)(1−s)α−1

Γ(α) + b(1−s)α−2(a−t)
Γ(α−1) ,

ξm−2 ≤ s ≤ t,

gm−21(t, s) =
(a−t)(1−s)α−1

Γ(α) + b(1−s)α−2(a−t)
Γ(α−1) ,

max{t, ξm−2} ≤ s < 1,

(9)

and ∆ = 1 +
∑m−2

i=1 ci
1

Γ(2−βi)
ξi

1−βi + b− a.

Proof. Assume that x satisfies problem (7), then Lemma 2.1 implies

Iασ(t) = x(t)− x(0)− x′(0)t.

Using the boundary conditions, we show that



x(0) + ax′(0) = 0,

x(0) +
(
1 + b+

∑m−2
i=1 ci

ξi
1−βi

Γ(2−βi)

)
x′(0) = −Iασ(1)− bIα−1σ(1)

−∑m−2
i=1 ciI

α−βiσ(ξi).

(10)

Hence

x(t) =Iασ(t) +
a− t

∆

(
Iασ(1) + bIα−1σ(1) +

m−2∑

i=1

ciI
α−βiσ(ξi)

)

=

∫ 1

0

G(t, s)σ(s)ds.

(11)

The proof is complete. ¤

Lemma 2.6. Function G(t, s) in Lemma 2.5 satisfies the following properties:

(P1) G(t, s) is continuous in [0, 1]× [0, 1) and G(t, s) > 0 for any t, s ∈ (0, 1);



Positive solutions for fractional functional differential equations 151

(P2) there exists a positive function γ(s) ∈ C(0, 1) such that

min
0≤t≤ξ1

G(t, s) ≥ γ(s) max
0≤t≤1

G(t, s), s ∈ [0, 1)

and

γ(s) ≥ 1

1 + ∆

a− ξ1
a

.

Proof. (P1) is obvious from (9). We only prove (P2) is true, from (9), we have

min
0≤t≤ξ1

G(t, s) =
1

∆





min0≤t≤ξ1{gi0(t, s), gi1(t, s)}, ξi ≤ s < ξi+1,

i = 0, 1, · · · ,m− 3,

min0≤t≤ξ1{gm−20(t, s), gm−21(t, s)}, ξm−2 ≤ s < 1,

≥ 1

∆





(
(1−s)α−1

Γ(α) + b(1−s)α−2

Γ(α−1) +
∑m−2

j=i+1 cj
(ξj−s)α−βj−1

Γ(α−βj)

)
(a− ξ1),

ξi ≤ s < ξi+1, i = 0, 1, · · · ,m− 3,(
(1−s)α−1

Γ(α) + b(1−s)α−2

Γ(α−1)

)
(a− ξ1), ξm−2 ≤ s < 1,

and

max
0≤t≤1

G(t, s) =
1

∆





max0≤t≤1{gi0(t, s), gi1(t, s)}, ξi ≤ s < ξi+1,

i = 0, 1, · · · ,m− 3,

max0≤t≤1{gm−20(t, s), gm−21(t, s)}, ξm−2 ≤ s < 1,

≤ 1

∆





(
∆(1−s)α−1+(1−s)α−1

Γ(α) + b(1−s)α−2

Γ(α−1) +
∑m−2

j=i+1 cj

× (ξj−s)α−βj−1

Γ(α−βj)

)
a, ξi ≤ s < ξi+1, i = 0, 1, · · · ,m− 3,(

∆(1−s)α−1+(1−s)α−1

Γ(α) + b(1−s)α−2

Γ(α−1)

)
a, ξm−2 ≤ s < 1,

=M(s).

Let

γ(s) =





(1−s)α−1

Γ(α)
+

b(1−s)α−2

Γ(α−1)
+
∑m−2

j=i+1 cj
(ξj−s)

α−βj−1

Γ(α−βj)

∆(1−s)α−1+(1−s)α−1

Γ(α)
+

b(1−s)α−2

Γ(α−1)
+
∑m−2

j=i+1 cj
(ξj−s)

α−βj−1

Γ(α−βj)

a−ξ1
a ,

ξi ≤ s < ξi+1, i = 0, 1, · · · ,m− 3,
(1−s)α−1

Γ(α)
+

b(1−s)α−2

Γ(α−1)

∆(1−s)α−1+(1−s)α−1

Γ(α)
+

b(1−s)α−2

Γ(α−1)

a−ξ1
a , ξm−2 ≤ s < 1.

(12)

It is easy to see that

min
0≤t≤ξ1

G(t, s) ≥ γ(s) max
0≤t≤1

G(t, s), s ∈ [0, 1),

and

γ(s) ≥ a− ξ1
a(1 + ∆)

:= γ. (13)

The proof is complete. ¤
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Let

φ(t) =

{
0, t ∈ [0, 1],

e
−t
a

a

∫ t

0
e

s
aφ(s)ds, t ∈ [−r, 0].

(14)

If x(t) satisfies problem (1), let y(t) = x(t) − φ(t), t ∈ [−r, 1], then y(θ(t)) =
x(θ(t))− φ(θ(t)), t ∈ [0, 1]. Thus y satisfies the equation

y(t) =

{∫ 1

0
G(t, s)f(s, y(θ(s)) + φ(θ(s)))ds, t ∈ [0, 1],

e
−t
a

∫ 1

0
G(0, s)f(s, y(θ(s)) + φ(θ(s)))ds, t ∈ [−r, 0].

(15)

Consider the Banach space E = C[−r, 1] with the norm ‖x‖ = supt∈[−r,1] |x(t)|.
Define an operator T by

Ty(t) =

{∫ 1

0
G(t, s)f(s, y(θ(s)) + φ(θ(s)))ds, t ∈ [0, 1],

e
−t
a

∫ 1

0
G(0, s)f(s, y(θ(s)) + φ(θ(s)))ds, t ∈ [−r, 0].

(16)

Let λ = e
−r
a γ, we define the cone P ⊂ E by

P =

{
x ∈ E|x ≥ 0, min

0≤t≤ξ1
x(t) ≥ λ‖x‖

}

and Λ = {t ∈ [0, 1]|0 ≤ θ(t) ≤ ξ1}.

3. Main results

For convenience, set

λ1 =
1∫

Λ
G(0, s)ds

, λ2 =
1

e
r
a

∫ 1

0
M(s)ds

, λ3 =
1

mint∈Λ

∫
Λ
G(t, s)ds

.

Lemma 3.1. Assume that f satisfies the following conditions:

(I) f(t, u) is measurable with respect to t on [0, 1];
(II) f(t, u) is continuous with respect to u on [0,+∞);
(III) there exist three real numbers α1, α2 ∈ [1, α), µ ≥ 0 and two functions

p1 ∈ L
1

α1−1 [0, 1], p2 ∈ L
1

α2−1 [0, 1] (If α1 = 1, means p1 ∈ L∞[0, 1],
similar to α2), such that

f(t, u) ≤ p1(t) + p2(t)u
µ, t ∈ [0, 1], u ∈ [0,+∞).

Then T : P → P is a completely continuous operator.

Proof. The proof will be given in three steps.
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Step 1: T : P → P .
For any y ∈ P , by (16), we see that Ty ≥ 0. Moreover,

min
0≤t≤ξ1

Ty(t) = min
0≤t≤ξ1

∫ 1

0

G(t, s)f(s, y(θ(s)) + φ(θ(s)))ds

≥ γ max
0≤t≤1

∫ 1

0

G(t, s)f(s, y(θ(s)) + φ(θ(s)))ds

≥ γ

∫ 1

0

G(0, s)f(s, y(θ(s)) + φ(θ(s)))ds

≥ max
−r≤t≤0

e−
t+r
a γ

∫ 1

0

G(0, s)f(s, y(θ(s)) + φ(θ(s)))ds,

(17)

(17) implies that min0≤t≤ξ1 Ty(t) ≥ γmax0≤t≤1 Ty(t) and min0≤t≤ξ1 Ty(t) ≥
γe−

r
a max−r≤t≤0 Ty(t). Hence, we obtain

min
0≤t≤ξ1

Ty(t) ≥ λ‖Ty‖.

Let {yn} be a sequence such that yn → y in P . Then

|T (yn(t))− T (y(t))|

≤ max
0≤t≤1

e
r
a

∫ 1

0

G(t, s)|f(s, yn(θ(s)) + φ(θ(s)))− f(s, y(θ(s)) + φ(θ(s)))|ds

≤ sup
0≤t≤1

|f(t, yn(θ(t)) + φ(θ(t)))− f(t, y(θ(t)) + φ(θ(t)))|e r
a

∫ 1

0

M(s)ds.

(18)

In view of condition (II) and M ∈ L1[0, 1], (18) means that ‖Tyn −Ty‖ → 0 as
n → 0.

Step 2: T maps bounded sets into bounded sets in P .
For each y ∈ Br = {y ∈ P |‖y‖ ≤ r}, then we have

|Ty(t)| ≤ max
0≤t≤1

e
r
a

∫ 1

0

G(t, s)|f(s, y(θ(s)) + φ(θ(s)))|ds

≤ e
r
a

∫ 1

0

M(s)[p1(s) + p2(s)(r + ‖φ‖)µ]ds.
(19)

Note that 1
2−αi

> 1, together with Minkowski’s inequality, we know that M ∈
L

1
2−αi [0, 1], i = 1, 2. Hence, (19) means that

‖Ty‖ ≤ e
r
a

(
‖M‖

L
1

2−α1 [0,1]
‖p1‖

L
1

α1−1 [0,1]
+ ‖M‖

L
1

2−α2 [0,1]
‖p2‖

L
1

α2−1 [0,1]

× (r + ‖φ‖)µ
)
.

Step 3: T maps bounded sets into equicontinuous sets of P .
Let y ∈ Br, t, τ ∈ [−r, 1] with t < τ .
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Case 1. t, τ ∈ [−r, 0]. Then for τ − t → 0,

|Ty(τ)− Ty(t)| ≤
(
e−

t
a − e−

τ
a

)∫ 1

0

G(0, s)f(s, y(θ(s)) + φ(θ(s)))ds → 0.

Case 2. t, τ ∈ [0, 1]

|Ty(τ)− Ty(t)| ≤
∫ 1

0

|G(τ, s)−G(t, s)|f(s, y(θ(s)) + φ(θ(s)))ds

≤
m−3∑

i=0

∫ ξi+1

ξi

|G(τ, s)−G(t, s)|[p1(s) + p2(s)(r + ‖φ‖)µ]ds

+

∫ 1

ξm−2

|G(τ, s)−G(t, s)|[p1(s) + p2(s)(r + ‖φ‖)µ]ds.

In view of G(t, s) is uniformly continuous on [0, 1]× [ξi, ξi+1], i = 0, 1, · · · ,m−3,
hence

m−3∑
i=0

∫ ξi+1

ξi

|G(τ, s)−G(t, s)|[p1(s) + p2(s)(r + ‖φ‖)µ]ds → 0, τ − t → 0. (20)

Subcase 1. ξi ≤ t < τ ≤ ξi+1, i = 0, 1, · · · ,m− 3.
∫ 1

ξm−2

|G(τ, s)−G(t, s)|[p1(s) + p2(s)(r + ‖φ‖)µ]ds

≤(τ − t)
1

∆

∫ 1

ξm−2

(
(1− s)α−1

Γ(α)
+

b(1− s)α−2

Γ(α− 1)

)
[p1(s) + p2(s)(r + ‖φ‖)µ]ds

≤(τ − t)
1

∆

[
2∑

i=1

(r + ‖φ‖)µ(i−1)

Γ(α)

(
2− αi

α− αi + 1

)2−αi

‖pi‖
L

1
αi−1 [0,1]

+

2∑
i=1

b(r + ‖φ‖)µ(i−1)

Γ(α− 1)

(
2− αi

α− αi

)2−αi

‖pi‖
L

1
αi−1 [0,1]

]
→ 0, τ − t → 0.

(21)

Subcase 2. ξm−2 ≤ t < τ ≤ 1.
∫ 1

ξm−2

|G(τ, s)−G(t, s)|[p1(s) + p2(s)(r + ‖φ‖)µ]ds

≤ (τ − t)
1

∆

∫ 1

ξm−2

(
(1− s)α−1

Γ(α)
+

b(1− s)α−2

Γ(α− 1)

)
[p1(s) + p2(s)(r + ‖φ‖)µ]ds

+
1

Γ(α)

∫ t

ξm−2

[(τ − s)α−1 − (t− s)α−1][p1(s) + p2(s)(r + ‖φ‖)µ]ds

+
1

Γ(α)

∫ τ

t

(τ − s)α−1[p1(s) + p2(s)(r + ‖φ‖)µ]ds,

(22)

notice that (t− s)α−1 is uniformly continuous on [ξm−2, 1]× [ξm−2, 1], then
∫ t

ξm−2

[(τ −s)α−1− (t−s)α−1][p1(s)+p2(s)(r+‖φ‖)µ]ds → 0, τ − t → 0. (23)
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Similar to subcase 1, (22) and (23) imply that
∫ 1

ξm−2

|G(τ, s)−G(t, s)|[p1(s) + p2(s)(r + ‖φ‖)µ]ds → 0, τ − t → 0. (24)

Subcase 3. −r < t ≤ 0 ≤ τ < ξ1 or ξi < t ≤ ξi+1 ≤ τ < ξi+2, i =
0, 1, · · · ,m− 3. In this case, we can obtain (24) from case I and case II directly.

As a consequence of steps 1 to 3, together with the Arzelá-Ascoli theorem,
we conclude that T : P → P is a completely continuous operator. ¤

Theorem 3.2. Assume that conditions (I)-(III) in Lemma 3.1 hold. If f satis-
fies the following conditions:

(H1) limu→0+ inft∈Λ
f(t,u)

u = +∞, limu→+∞ inft∈Λ
f(t,u)

u = +∞;
(H2) there exist two positive numbers ρ > 0 and L ∈ (0, λ2) such that f(t, u) ≤

Lρ, (t, u) ∈ [0, 1]× [0, ρ+ ‖φ‖],
then problem (1) has at least two positive solutions x1, x2.

Proof. At first, from limu→0+ inft∈Λ
f(t,u)

u = +∞, we know that ∀L1 ∈ [λ1

λ ,+∞),
∃ρ1 ∈ (0, λρ) such that

f(t, u) ≥ L1u, (t, u) ∈ Λ× (0, ρ1]. (25)

Let

Ω1 = {y|y ∈ E, ‖y‖ < ρ1}.
For y ∈ P ∩ ∂Ω1 ⊂ P , we have min

t∈[0,ξ1]
y(t) ≥ λ‖y‖. Hence, If y ∈ P ∩ ∂Ω1, we

have

Ty(0) =

∫ 1

0

G(0, s)f(s, y(θ(s)) + φ(θ((s)))ds

≥
∫

Λ

G(0, s)f(s, y(θ(s)) + φ(θ((s)))ds

=

∫

Λ

G(0, s)f(s, y(θ(s)))ds

≥
∫

Λ

G(0, s)L1y(θ(s))ds

≥ L1λ‖y‖
∫

Λ

G(0, s)ds ≥ ‖y‖.

(26)

Thus

‖Ty‖ ≥ ‖y‖, y ∈ P ∩ ∂Ω1. (27)

Secondly, from limu→+∞ inft∈Λ
f(t,u)

u = +∞, we know that ∀L2 ∈ [λ1

λ ,+∞),
∃ρ2 ∈ ( ρλ ,+∞), such that

f(t, u) ≥ L2u, (t, u) ∈ Λ× [λρ2,+∞). (28)

Set

Ω2 = {y|y ∈ E, ‖y‖ < ρ2}. (29)
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Similar to the process of (26), we get

‖Ty‖ ≥ ‖y‖, y ∈ P ∩ ∂Ω2. (30)

Thirdly, set

Ω = {y|y ∈ E, ‖y‖ < ρ}. (31)

If y ∈ P ∩∂Ω, then 0 ≤ y(θ(s))+φ(θ(s)) ≤ ρ+‖φ‖, s ∈ [0, 1]. By (H2), we have

Ty(t) ≤ e
r
a

∫ 1

0

M(s)f
(
s, y(θ(s)) + φ(θ(s))

)
ds

≤ e
r
aL‖y‖

∫ 1

0

M(s)ds < ‖y‖,
(32)

hence

‖Ty‖ < ‖y‖, y ∈ P ∩ ∂Ω. (33)

According to (27), (30), (33) and Theorem 2.2, one see that T have two fixed
points y1 ∈ P ∩ (Ω\Ω1) and y2 ∈ P ∩ (Ω2\Ω). Then problem (1) has at least
two positive solutions x1 = y1 + φ, x2 = y2 + φ satisfy

‖x1‖ = max
t∈[−r,1]

(y1(t) + φ(t)) < ρ+ ‖φ‖, max
t∈[0,1]

x1(t) = max
t∈[0,1]

y1(t) < ρ

and

‖x2‖ = max
t∈[−r,1]

(y2(t) + φ(t)) ≥ ‖y2‖ > ρ.

The proof is complete. ¤

Theorem 3.3. Assume that conditions (I)-(III) in Lemma 3.1 hold and φ(t) ≡
0, t ∈ [−r, 0]. If f satisfies the following conditions:

(H3) limu→0+ supt∈[0,1]
f(t,u)

u = 0, limu→+∞ supt∈[0,1]
f(t,u)

u = 0;

(H4) there exist two positive numbers ρ̃ > 0 and L̃ ∈ (λ1,∞) such that

f(t, u) ≥ L̃ρ̃, (t, u) ∈ Λ× [λρ̃, ρ̃],

then problem (1) has at least two positive solutions.

Proof. Firstly, from limu→0+ supt∈[0,1]
f(t,u)

u = 0, we know that ∀ε ∈ (0, λ2],

∃ρ̃1 ∈ (0, λρ̃) such that

f(t, u) ≤ εu, (t, u) ∈ [0, 1]× (0, ρ̃1]. (34)

Let

Ω1 = {y|y ∈ E, ‖y‖ < ρ̃1}.
Replace L with ε in (32), similarly, we have

‖Ty‖ ≤ ε‖y‖e r
a

∫ 1

0

M(s)ds ≤ ‖y‖, y ∈ P ∩ ∂Ω̃1. (35)

Secondly, from limu→+∞ supt∈[0,1]
f(t,u)

u = 0, we see that ∀ε̃ ∈ (0, λ2], ∃ρ̃2 ∈
( ρ̃λ ,+∞), such that

f(t, u) ≤ ε̃u, u ∈ [λρ̃2,+∞). (36)
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Let

Ω̃2 = {y|y ∈ E, ‖y‖ < ρ̃2}. (37)

Similar to (35), we can get

‖Ty‖ ≤ ε̃‖y‖e r
a

∫ 1

0

M(s)ds ≤ ‖y‖, y ∈ P ∩ ∂Ω̃2. (38)

Thirdly, set

Ω̃ = {y|y ∈ E, ‖y‖ < ρ̃}. (39)

If y ∈ P ∩ ∂Ω̃, by (H4), substitute L̃ for L1λ in (26), we have

Ty(0) ≥ L̃‖y‖
∫

Λ

G(0, s)ds

> ‖y‖,
(40)

hence

‖Ty‖ > ‖y‖, y ∈ P ∩ ∂Ω̃. (41)

From (35), (38), (41) and Theorem 2.2, we know that T have two fixed points

y1 ∈ P∩(Ω̃\Ω̃1) and y2 ∈ P∩(Ω̃2\Ω̃). Then problem (1) has at least two positive
solutions x1 = y1, x2 = y2 satisfy 0 < maxt∈[0,1] x1(t) < ρ̃ < maxt∈[0,1] x2(t).
The proof is complete. ¤

Theorem 3.4. Assume that conditions (I)-(III) in Lemma 3.1 hold and φ(t) ≡
0, t ∈ [−r, 0]. If f satisfies one of the following conditions:

(H5) limu→0+ supt∈[0,1]
f(t,u)

u ≤ λ2, limu→+∞ inft∈Λ
f(t,u)

u ≥ λ1

λ ;

(H6) limu→0+ supt∈[0,1]
f(t,u)

u ≥ λ1

λ , limu→+∞ inft∈Λ
f(t,u)

u ≤ λ2.

Then problem (1) has at least one positive solution.

Proof. We only prove the Theorem in the case of (H5), the proof for (H6) is
similar.

From limx→0+ supt∈[0,1]
f(t,u)

u ≤ λ2, we can choose sufficiently small ρ1 > 0,
such that

f(t, u) ≤ λ2u, (t, u) ∈ [0, 1]× (0, ρ1]. (42)

Set

Ωρ1 = {y|y ∈ E, ‖y‖ < ρ1}. (43)

Replace L with λ2 in (32), similarly, we have

‖Ty‖ ≤ ‖y‖, y ∈ P ∩ ∂Ωρ1 . (44)

On the other hand, By limu→+∞ inft∈Λ
f(t,u)

u ≥ λ1

λ , we can choose sufficiently
large ρ2 > ρ1

λ , such that

f(t, u) ≥ λ1

λ
u, (t, u) ∈ Λ× [λρ2,∞). (45)

Set

Ωρ2 = {y|y ∈ E, ‖y‖ < ρ2}. (46)
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If y ∈ P ∩ ∂Ωρ2 ⊂ P , we have mint∈[0,ξ1] y(t) ≥ λ‖y‖. Hence, for y ∈ P ∩ ∂Ωρ2 ,

replace L1 with λ1

λ in (26), similarly, we have

‖Ty‖ ≥ ‖y‖, y ∈ P ∩ ∂Ωρ2 . (47)

Using (44), (47) and Theorem 2.2, we see that T has at least one fixed point
y ∈ P ∩ (Ωρ2\Ωρ1), namely, x(t) = y(t) is a positive solution of problem (1).
The proof is complete. ¤

Theorem 3.5. Assume that conditions (I)-(III) in Lemma 3.1 hold and there
exist positive constants c, d, h such that c+ ‖φ‖ < λd < d < λ2

λ3
h and

(H1)′ f(t, u) < λ2c, (t, u) ∈ [0, 1]× [0, c+ ‖φ‖];
(H2)′ f(t, u) ≤ λ2h, (t, u) ∈ [0, 1]× [0, h+ ‖φ‖];
(H3)′ f(t, u) > λ3d, (t, u) ∈ Λ× [λd, h+ ‖φ‖].

Then problem (1) has at least three positive solutions.

Proof. We define the nonnegative continuous concave functional β by β(y) =
mint∈Λ y(t).

Taking y ∈ Ph, we have ‖y‖ ≤ h. Then 0 ≤ y(θ(s)) + φ(θ(s)) ≤ ‖y‖+ ‖φ‖ ≤
h+ ‖φ‖, for s ∈ [0, 1]. So

‖Ty‖ ≤ e
r
a

∫ 1

0

M(s)f(s, y(θ(s)) + φ(θ(s)))ds

≤ λ2he
r
a

∫ 1

0

M(s)ds = h.

(48)

Hence, (48) together with Lemma 3.1 imply that T : Ph → Ph is completely
continuous. Similar to (48), from (H1)′, we can get that ‖Ty‖ < c, for ‖y‖ ≤ c.

It is obvious that {y ∈ P (β, d, h)|β(y) > d} 6= ∅. We choose y ∈ P (β, d, h),
then λd ≤ λβ(y) ≤ λ‖y‖ ≤ y(θ(s)) + φ(θ(s)) ≤ h+ ‖φ‖, s ∈ Λ. Hence

β(Ty) = min
t∈Λ

∫ 1

0

G(t, s)f(s, y(θ(s)) + θ((s)))ds

> λ3dmin
t∈Λ

∫

Λ

G(t, s)ds = d.

(49)

From Theorem 2.3, T has at least three fixed points y1, y2, y3. Namely, problem
(1) has at least three positive solutions x1, x2, x3 satisfy xi = yi + φ, i = 1, 2, 3
and

max
t∈[0,1]

x1(t) < c, d < min
t∈Λ

x2(t), c < max
t∈[0,1]

x3(t), min
t∈Λ

x3(t) < d.

The proof is complete. ¤
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4. Examples

Example 4.1. Consider the problem




D
3
2
0+x(t) =

1

40

(
1 + sin t+

(1 + t)x2(t− 1
2 )e

x(t− 1
2 )

1 + ex(t−
1
2 )

)
, t ∈ (0, 1),

x(0) + 2x′(0) = −t2, t ∈ [−1, 0],

x(1) + 2x′(1) + 3D
1
2
0+x(0.5) = 0,

(50)

where f(t, x) = 1
40

(
1 + sin t+ (1+t)x2ex

1+ex

)
, (t, x) ∈ [0, 1] × [0,+∞), a = b = 2,

c1 = 3, α = 3
2 , β1 = 1

2 , ξ1 = 0.5, φ(t) = −t2, t ∈ [−1, 0].

It is easy to see that Λ = [0.5, 1], ‖φ‖ ≈ 0.18977. From lim
x→0+

inf
t∈[0.5,1]

f(t,x)
x =

lim
x→+∞

inf
t∈[0.5,1]

f(t,x)
x = +∞ and f satisfies Lemma 3.1, so condition (H1) in The-

orem 3.2 holds.
Since λ ≈ 0.103535, λ2 ≈ 0.145737, let ρ = 1, L = 0.14, then f(t, x) ≤ 0.14 =

Lρ, (t, x) ∈ [0, 1]× [0, 1.18977]. Hence, condition (H2) in Theorem 3.2 holds too.
From Theorem 3.2, problem (50) has at least two positive solutions.

Example 4.2. Consider the problem




D
3
2
0+x(t) = f

(
t, x

(
t− 1

2

))
, t ∈ (0, 1),

x(0) + 2x′(0) = −t2, t ∈ [−1, 0],

x(1) + 2x′(1) + 3D
1
2
0+x(0.5) = 0,

(51)

where

f(t, u) =
t

200
+





u3

4
, (t, u) ∈ [0, 1]× [0, 0.3],

3.9 + 389.325(u− 0.31), (t, u) ∈ [0, 1]× (0.3, 0.31],

4.1 +
2

30.69
(u− 31), (t, u) ∈ [0, 1]× (0.31, 31],

u− 31 + 4.1| cos(u− 31)|, (t, u) ∈ [0, 1]× (31,+∞).

Choosing c = 0.05, d = 3, h = 30, from λ3 ≈ 1.28260, it is easy to verify that
all conditions in Theorem 3.5 hold, then problem (51) has at least three positive
solutions.

References

1. R.P. Agarwal, M. Benchohra, S. Hamani, A survey on existence results for boundary value
problems of nonlinear fractional differential equations and inclusions, Acta. Appl. Math.
109 (2010), 973-1033.



160 Haihua Wang

2. C. Bai, Triple positive solutions for a boundary value problem of nonlinear fractional dif-
ferential equation, Electron. J. Qual. Theory Differ. Equ. 24 (2008), 1-10.
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