• Title/Summary/Keyword: elliptic operators

Search Result 33, Processing Time 0.024 seconds

Morse inequality for flat bundles

  • Kim, Hong-Jong
    • Journal of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.519-529
    • /
    • 1995
  • Let M be a compact smooth manifold of dimension n and let E be a flat (complet) vector bundle over M of rank r.

  • PDF

ALTERNATIVE PROOF OF EXISTENCE THEOREM FOR CERTAIN COMPETITION MODELS

  • Ahn, Inkyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.119-130
    • /
    • 2000
  • We give alternative proof of the existence theorem for certain elliptic systems describing competing interactions with nonlinear di usion. The existence of positive solution depends on the sign of the principal eigenvalue of suitable operators of Schr$\ddot{o}$dinger type. If the sign of such operators are both positive, then system has a positive solution. The main tool employed is the fixed point index of compact operator on positive cones.

  • PDF

OPTIMAL GEVREY EXPONENTS FOR SOME DEGENERATE ELLIPTIC OPERATORS

  • Matsuzawa, Tadato
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.981-997
    • /
    • 1998
  • We shall show first general Metivier operators ${D_y}^2+(x^{2l}+y^{2k}){D_x}^2,l,k=1,2,....,have {G_{x,y}}^{{\theta,d}}$-hypoellipticity in the vicinity of the origin (0,0), where $\theta=\frac{l(1+k)}{l(1+k)-k},\;d=\frac{\theta+k}{1+k}$ (>1), and finally the optimality of these exponents {$\theta$, d} will be shown.

  • PDF

EIGENVALUES FOR THE SEMI-CIRCULANT PRECONDITIONING OF ELLIPTIC OPERATORS WITH THE VARIABLE COEFFICIENTS

  • Kim, Hoi-Sub;Kim, Sang-Dong;Lee, Yong-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.627-645
    • /
    • 2007
  • We investigate the eigenvalues of the semi-circulant preconditioned matrix for the finite difference scheme corresponding to the second-order elliptic operator with the variable coefficients given by $L_vu\;:=-{\Delta}u+a(x,\;y)u_x+b(x,\;y)u_y+d(x,\;y)u$, where a and b are continuously differentiable functions and d is a positive bounded function. The semi-circulant preconditioning operator $L_cu$ is constructed by using the leading term of $L_vu$ plus the constant reaction term such that $L_cu\;:=-{\Delta}u+d_cu$. Using the field of values arguments, we show that the eigenvalues of the preconditioned matrix are clustered at some number. Some numerical evidences are also provided.

INFINITELY MANY SMALL ENERGY SOLUTIONS FOR EQUATIONS INVOLVING THE FRACTIONAL LAPLACIAN IN ℝN

  • Kim, Yun-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1269-1283
    • /
    • 2018
  • We are concerned with elliptic equations in ${\mathbb{R}}^N$, driven by a non-local integro-differential operator, which involves the fractional Laplacian. The main aim of this paper is to prove the existence of small solutions for our problem with negative energy in the sense that the sequence of solutions converges to 0 in the $L^{\infty}$-norm by employing the regularity type result on the $L^{\infty}$-boundedness of solutions and the modified functional method.

EXISTENCE OF THREE SOLUTIONS FOR A NAVIER BOUNDARY VALUE PROBLEM INVOLVING THE p(x)-BIHARMONIC

  • Yin, Honghui;Liu, Ying
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1817-1826
    • /
    • 2013
  • The existence of at least three weak solutions is established for a class of quasilinear elliptic equations involving the p(x)-biharmonic operators with Navier boundary value conditions. The technical approach is mainly based on a three critical points theorem due to Ricceri [11].

EXISTENCE OF POSITIVE SOLUTIONS OF PREDATOR-PREY SYSTEMS WITH DEGENERATE DIFFUSION RATES

  • Ryu, Kimun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.19-32
    • /
    • 2020
  • We discuss the coexistence of positive solutions to certain strongly-coupled predator-prey elliptic systems under the homogeneous Dirichlet boundary conditions. The sufficient condition for the existence of positive solutions is expressed in terms of the spectral property of differential operators of nonlinear Schrödinger type which reflects the influence of the domain and nonlinearity in the system. Furthermore, applying the obtained results, we investigate the sufficient conditions for the existence of positive solutions of a predator-prey system with degenerate diffusion rates.

ON DISCONTINUOUS ELLIPTIC PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN IN ℝN

  • Kim, In Hyoun;Kim, Yun-Ho;Park, Kisoeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1869-1889
    • /
    • 2018
  • We are concerned with the following fractional p-Laplacian inclusion: $$(-{\Delta})^s_pu+V(x){\mid}u{\mid}^{p-2}u{\in}{\lambda}[{\underline{f}}(x,u(x)),\;{\bar{f}}(s,u(x))]$$ in ${\mathbb{R}}^N$, where $(-{\Delta})^s_p$ is the fractional p-Laplacian operator, 0 < s < 1 < p < $+{\infty}$, sp < N, and $f:{\mathbb{R}}^N{\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is measurable with respect to each variable separately. We show that our problem with the discontinuous nonlinearity f admits at least one or two nontrivial weak solutions. In order to do this, the main tool is the Berkovits-Tienari degree theory for weakly upper semicontinuous set-valued operators. In addition, our main assertions continue to hold when $(-{\Delta})^s_pu$ is replaced by any non-local integro-differential operator.