References
- R. A. Adams and J. J. F. Fournier, Sobolev Spaces, second edition, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003.
- A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381. https://doi.org/10.1016/0022-1236(73)90051-7
-
G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in
${\mathbb{R}}^N$ , J. Differential Equations 255 (2013), no. 8, 2340-2362. https://doi.org/10.1016/j.jde.2013.06.016 - B. Barrios, E. Colorado, A. de Pablo, and U. Sanchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), no. 11, 6133-6162. https://doi.org/10.1016/j.jde.2012.02.023
- J. Bertoin, Levy Processes, Cambridge Tracts in Mathematics, 121, Cambridge University Press, Cambridge, 1996.
- Z. Binlin, G. Molica Bisci, and R. Servadei, Superlinear nonlocal fractional problems with infinitely many solutions, Nonlinearity 28 (2015), no. 7, 2247-2264. https://doi.org/10.1088/0951-7715/28/7/2247
- C. Bjorland, L. Caffarelli, and A. Figalli, Non-local gradient dependent operators, Adv. Math. 230 (2012), no. 4-6, 1859-1894. https://doi.org/10.1016/j.aim.2012.03.032
- L. Caffarelli, Non-local diffusions, drifts and games, in Nonlinear partial differential equations, 37-52, Abel Symp., 7, Springer, Heidelberg, 2012.
- X. Chang and Z.-Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differential Equations 256 (2014), no. 8, 2965-2992. https://doi.org/10.1016/j.jde.2014.01.027
- E. B. Choi, J.-M. Kim, and Y.-H. Kim, Infinitely many solutions for equations of p(x)-Laplace type with the nonlinear Neumann boundary condition, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), no. 1, 1-31. https://doi.org/10.1017/S0308210517000117
- E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
- P. Drabek, A. Kufner, and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter & Co. Berlin, 1997.
- Z. Gao, X. Tang, and W. Zhang, Multiplicity and concentration of solutions for fractional Schrodinger equations, Taiwanese J. Math. 21 (2017), no. 1, 187-210. https://doi.org/10.11650/tjm.21.2017.7147
- B. Ge, Multiple solutions of nonlinear Schrodinger equation with the fractional Laplacian, Nonlinear Anal. Real World Appl. 30 (2016), 236-247. https://doi.org/10.1016/j.nonrwa.2016.01.003
- G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Model. Simul. 7 (2008), no. 3, 1005-1028. https://doi.org/10.1137/070698592
- T.-X. Gou and H.-R. Sun, Solutions of nonlinear Schrodinger equation with fractional Laplacian without the Ambrosetti-Rabinowitz condition, Appl. Math. Comput. 257 (2015), 409-416.
- Z. Guo, Elliptic equations with indefinite concave nonlinearities near the origin, J. Math. Anal. Appl. 367 (2010), no. 1, 273-277. https://doi.org/10.1016/j.jmaa.2010.01.012
- H.-P. Heinz, Free Ljusternik-Schnirelman theory and the bifurcation diagrams of certain singular nonlinear problems, J. Differential Equations 66 (1987), no. 2, 263-300. https://doi.org/10.1016/0022-0396(87)90035-0
- Y. Jing and Z. Liu, Infinitely many solutions of p-sublinear p-Laplacian equations, J. Math. Anal. Appl. 429 (2015), no. 2, 1240-1257. https://doi.org/10.1016/j.jmaa.2015.04.069
- N. Laskin, Fractional quantum mechanics and Levy path integrals, Phys. Lett. A 268 (2000), no. 4-6, 298-305. https://doi.org/10.1016/S0375-9601(00)00201-2
- N. Laskin, Fractional Schrodinger equation, Phys. Rev. E (3) 66 (2002), no. 5, 056108, 7 pp. https://doi.org/10.1103/PhysRevE.66.056108
- R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339 (2000), no. 1, 77 pp.
- R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 37 (2004), no. 31, R161-R208. https://doi.org/10.1088/0305-4470/37/31/R01
- D. Naimen, Existence of infinitely many solutions for nonlinear Neumann problems with indefinite coefficients, Electron. J. Differential Equations 2014 (2014), no. 181, 12 pp.
- K. Perera, M. Squassina, and Y. Yang, Bifurcation and multiplicity results for critical fractional p-Laplacian problems, Math. Nachr. 289 (2016), no. 2-3, 332-342. https://doi.org/10.1002/mana.201400259
- K. Perera, M. Squassina, and Y. Yang, Critical fractional p-Laplacian problems with possibly vanishing potentials, J. Math. Anal. Appl. 433 (2016), no. 2, 818-831. https://doi.org/10.1016/j.jmaa.2015.08.024
-
S. Secchi, Ground state solutions for nonlinear fractional Schrodinger equations in
${\mathbb{R}}^N$ , J. Math. Phys. 54 (2013), no. 3, 031501, 17 pp. https://doi.org/10.1063/1.4793990 - R. Servadei, Infinitely many solutions for fractional Laplace equations with subcritical nonlinearity, in Recent trends in nonlinear partial differential equations. II. Stationary problems, 317-340, Contemp. Math., 595, Amer. Math. Soc., Providence, RI, 2013.
- R. Servadei and E. Valdinoci, Mountain pass solutions for non-local elliptic operators, J. Math. Anal. Appl. 389 (2012), no. 2, 887-898. https://doi.org/10.1016/j.jmaa.2011.12.032
- Z. Tan and F. Fang, On superlinear p(x)-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal. 75 (2012), no. 9, 3902-3915. https://doi.org/10.1016/j.na.2012.02.010
-
K. Teng, Multiple solutions for a class of fractional Schrodinger equations in
${\mathbb{R}}^N$ , Nonlinear Anal. Real World Appl. 21 (2015), 76-86. https://doi.org/10.1016/j.nonrwa.2014.06.008 - Z.-Q. Wang, Nonlinear boundary value problems with concave nonlinearities near the origin, NoDEA Nonlinear Differential Equations Appl. 8 (2001), no. 1, 15-33. https://doi.org/10.1007/PL00001436
- Y. Wei and X. Su, Multiplicity of solutions for non-local elliptic equations driven by the fractional Laplacian, Calc. Var. Partial Differential Equations 52 (2015), no. 1-2, 95-124. https://doi.org/10.1007/s00526-013-0706-5
- M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser Boston, Inc., Boston, MA, 1996.
- B. Zhang and M. Ferrara, Multiplicity of solutions for a class of superlinear non-local fractional equations, Complex Var. Elliptic Equ. 60 (2015), no. 5, 583-595. https://doi.org/10.1080/17476933.2014.959005
- W. Zou, Variant fountain theorems and their applications, Manuscripta Math. 104 (2001), no. 3, 343-358. https://doi.org/10.1007/s002290170032