DOI QR코드

DOI QR Code

EIGENVALUES FOR THE SEMI-CIRCULANT PRECONDITIONING OF ELLIPTIC OPERATORS WITH THE VARIABLE COEFFICIENTS

  • Kim, Hoi-Sub (DEPARTMENT OF MATHEMATICS AND INFORMATION KYUNGWON UNIVERSITY) ;
  • Kim, Sang-Dong (DEPARTMENT OF MATHEMATICS KYUNGPOOK NATIONAL UNIVERSITY) ;
  • Lee, Yong-Hun (DIVISION OF MATHEMATICS AND STATISTICAL INFORMATICS(INSTITUTE OF APPLIED STATISTICS) CHONBUK NATIONAL UNIVERSITY)
  • Published : 2007.05.31

Abstract

We investigate the eigenvalues of the semi-circulant preconditioned matrix for the finite difference scheme corresponding to the second-order elliptic operator with the variable coefficients given by $L_vu\;:=-{\Delta}u+a(x,\;y)u_x+b(x,\;y)u_y+d(x,\;y)u$, where a and b are continuously differentiable functions and d is a positive bounded function. The semi-circulant preconditioning operator $L_cu$ is constructed by using the leading term of $L_vu$ plus the constant reaction term such that $L_cu\;:=-{\Delta}u+d_cu$. Using the field of values arguments, we show that the eigenvalues of the preconditioned matrix are clustered at some number. Some numerical evidences are also provided.

Keywords

References

  1. Z.-Z. Bai, O. Axelsson, and S.-X. Qiu, A class of nested iteration schemes for linear systems with a coefficient matrix with a dominant positive definite symmetric part, Numer. Algorithms 35 (2004), no. 2-4, 351-37 https://doi.org/10.1023/B:NUMA.0000021766.70028.66
  2. Z.-Z. Bai, G. H. Golub and M. K. Ng, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24 (2003), no. 3, 603-626 https://doi.org/10.1137/S0895479801395458
  3. Z.-Z. Bai, G. H. Golub, L.-Z. Lu, and J.-F. Yin, Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput. 26 (2005), no. 3, 844-863 https://doi.org/10.1137/S1064827503428114
  4. D. Bertaccini, G. H. Golub, S. Serra Capizzano, and C. T. Possio, Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation, Numer. Math. 99 (2005), no. 3, 441-484 https://doi.org/10.1007/s00211-004-0574-1
  5. R. Chan and T. Chan, Circulant preconditioners for elliptic problems, J. Numer. Linear Algebra Appl. 1 (1992), no. 1, 77-101
  6. R. Chan and X. Jin, A family of block preconditioners for block systems, SIAM J. Sci. Statist. Comput. 13 (1992), no. 5, 1218-1235 https://doi.org/10.1137/0913070
  7. R. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev. 38 (1996), no. 3, 427-482 https://doi.org/10.1137/S0036144594276474
  8. W. M. Cheung and M. K. Ng, Block-circulant preconditioners for systems arising from discretization of the three-dimensional convection-diffusion equation, Proceedings of the 9th International Congress on Computational and Applied Mathematics (Leuven, 2000), J. Comput. Appl. Math. 140 (2002), no. 1-2, 143-158 https://doi.org/10.1016/S0377-0427(01)00519-2
  9. H. C. Elman and G. H. Golub, Iterative methods for cyclically reduced nonselfadjoint linear systems, Math. Comp. 54 (1990), no. 190, 671-700 https://doi.org/10.2307/2008506
  10. H. C. Elman and G. H. Golub, Iterative methods for cyclically reduced nonselfadjoint linear systems. II., Math. Comp. 56 (1991), no. 193, 215-242 https://doi.org/10.2307/2008538
  11. G. H. Golub, C. Grief, and J. M. Varah, Block orderings for tensor-product grids in two and three dimensions, Numer. Algorithms 30 (2002), no. 2, 93-11l https://doi.org/10.1023/A:1016030016985
  12. G. H. Golub and D. Vanderstraeten, On the preconditioning of matrices with skewsymmetric splittings, Mathematical journey through analysis, matrix theory and scientific computation (Kent, OH, 1999), Numer. Algorithms 25 (2000), no. 1-4, 223-239 https://doi.org/10.1023/A:1016637813615
  13. K. E. Gustafson and D. K. M. Roo, Numerical range, The field of values of linear operators and matrices. Universitext. Springer-Verlag, New York, 1997
  14. L. Hemmingsson, A semi-circulant preconditioner for the convection-diffusion equation, Numer. Math. 81 (1998), no. 2, 211-248 https://doi.org/10.1007/s002110050390
  15. S. D. Kim and S. V. Parter, Semicirculant preconditioning of elliptic operators, SIAM J. Numer. Anal. 41 (2003), no. 2, 767-795 https://doi.org/10.1137/S0036142902403000
  16. A. R. Mitchell and D. F. Griffiths, The finite difference method in partial differential equations, A Wiley-Interscience Publication. John Wiley & Sons, Ltd., Chichester, 1980
  17. T. A. Manteuffel and J. Otto, Optimal equivalent preconditioners, SIAM J. Numer. Anal. 30 (1993), no. 3, 790-812 https://doi.org/10.1137/0730040
  18. T. A. Manteuffel and S. V. Parter, Preconditioning and boundary conditions, SIAM J. Numer. Anal. 27 (1990), no. 3, 656-694 https://doi.org/10.1137/0727040
  19. M. K. Ng, Circulant and skew-circulant splitting methods for Toeplitz systems, Proceedings of the 6th Japan-China Joint Seminar on Numerical Mathematics (Tsukuba, 2002). J. Comput. Appl. Math. 159 (2003), no. 1, 101-108 https://doi.org/10.1016/S0377-0427(03)00562-4