• Title/Summary/Keyword: dual trench gate

Search Result 16, Processing Time 0.023 seconds

The Characteristics of a Dual gate Trench Emitter IGBT (이중 Gate를 갖는 Trench Emitter IGBT의 특성)

  • Gang, Yeong-Su;Jeong, Sang-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.523-526
    • /
    • 2000
  • A dual gate trench emitter IGBT structure is proposed and studied numerically using the device simulator MEDICI. The on-state forward voltage drop latch-up current density turn-off time and breakdown voltage of the proposed structure are compared with those of the conventional DMOS-IGBT and trench gate IGBT structures. The proposed structure forms an additional channel and increases collector current level resulting in reduction of on -state forward voltage drop. In addition the trench emitter increases latch-up current density by 148% in comparison with that for the conventional DMOS-IGBT and by 83% compared with that for the trench gate IGBT without degradation in breakdown voltage when the half trench gate width(Tgw) and trench emitter depth(Ted) are fixed at $1.5\mum\; and\; 2\mum$, respectively

  • PDF

A Study Comparison and Analysis of Electrical Characteristics of IGBTs with Variety Gate Structures (다양한 게이트 구조에 따른 IGBT 소자의 전기적 특성 비교 분석 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.681-684
    • /
    • 2016
  • This research was carried out experiments of variety IGBTs for industrial inverter and electric vehicle. The devices for this paper were planar gate IGBT, trench gate IGBT and dual gate IGBT and we designed using same design and process parameters. As a result of experiments, the electrical characteristics of planar gate IGBT were 1,459 V of breakdown voltage, 4.04 V of threshold voltage and 4.7 V of on-state voltage drop. And the electrical characteristics of trench gate IGBT were 1,473 V of breakdown voltage, 4.11 V of threshold voltage and 3.17 V of on-state voltage drop. Lastly, the electrical characteristics of dual gate IGBT were 1,467 V of breakdown voltage, 4.14 V of threshold voltage and 3.08V of on-state voltage drop. We almost knew that the trench gate IGBT was superior to dual gate IGBT in terms of breakdown voltage. On the other hand, the dual gate IGBT was better than the trench gate IGBT in terms of on state voltage drop.

A Study on the Change of Electrical Characteristics in the EST(Emitter Switched Thyristor) with Trench Electrodes (EST(Emitter Switched Thyristor) 소자의 트랜치 전극에 의한 특성 변화 연구)

  • 김대원;성만영;강이구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.259-266
    • /
    • 2004
  • In this paper. a new two types of EST(Emitter Switched Thyristor) structures are proposed to improve the electrical characteristics including the current saturation capability. Besides, the two dimensional numerical simulations were carried out using MEDICI to verify the validity of the device and examine the electrical characteristics. First, a vortical trench electrode EST device is proposed to improve snap-back effect and its blocking voltage. Second, a dual trench gate EST device is proposed to obtain high voltage current saturation characteristics and high blocking voltage and to eliminate snap-back effect. The two proposed devices have superior electrical characteristics when compared to conventional devices. In the vertical trench electrode EST, the snap-back effect is considerably improved by using the vertical trench gate and cathode electrode and the blocking voltage is one times better than that of the conventional EST. And in the dual trench gate EST, the snap-back effect is completely removed by using the series turn-on and turn-off MOSFET and the blocking voltage is one times better than that of the conventional EST. Especially current saturation capability is three times better than that of the other EST.

Analysis of Electrical Characteristics of Dual Gate IGBT for Electrical Vehicle (전기자동차용 이중 게이트 구조를 갖는 전력 IGBT소자의 전기적인 특성 분석)

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • IGBT (Insulated Gate Bipolar Transistor) device is a device with excellent current conducting capability, it is widely used as a switching device power supplies, converters, solar inverter, household appliances or the like, designed to handle the large power. This research was proposed 1200 class dual gate IGBT for electrical vehicle. To compare the electrical characteristics, The planar gate IGBT and trench gate IGBT was designd with same design and process parameters. And we carried to compare electrical characteristics about three devices. As a result of analyzing electrical characteristics, The on state voltage drop charateristics of dual gate IGBT was superior to those of planar IGBT and trench IGBT. Therefore, Aspect to Energy Loss, dual gate IGBT was efficiency. The breakdown volgate and threshold voltage of planar, trench and dual gate IGBT were 1460V and 4V.

Study of Characteristics of Dual Channel Trench IGBT (Dual Channel을 가진 Trench Insulated Gate Biploar Transistor(IGBT)특성 연구)

  • Moon, Jin-Woo;Chung, Sang-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1469-1471
    • /
    • 2001
  • A Dual Channel Trench IGBT (Insulated Gate Bipolar Transistor) is proposed to improve the latch-up characteristics. Simulation results by MEDICI have shown that the latching current density of proposed device was found to be 2850 A/$cm^2$ while that of conventional device was 1610 A/$cm^2$. The latching current desity of the proposed strucutre was 77.02% higher than that of conventional structre.

  • PDF

A New Dual Gate Transistor Employing Thyristor Action (사이리스터 동작을 이용한 새로운 이중 게이트 트랜지스터)

  • 하민우;전병철;최연익;한민구
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.358-363
    • /
    • 2004
  • A new 600 V dual gate transistor employing thyristor action, which incorporates floating PN junction and trench gate IGBT, is proposed to improve the forward current-voltage characteristics and the short circuit ruggedness. Our two-dimensional numerical simulation shows that the proposed device exhibits low forward voltage drop and eliminates the snapback phenomena compared with conventional trench gate IGBT and EST The proposed device achieves high current saturation characteristics by separating floating N+ emitter and cathode. The proposed device achieves low saturation current value compared with conventional devices, and the short-circuit ruggedness is improved. The proposed device may be suitable for the use of high voltage switching applications.

A New EST with Dual Trench Gate Electrode (DTG-EST)

  • Kim, Dae-Won;Sung, Man-Young;Kang, Ey-Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.15-19
    • /
    • 2003
  • In this paper, the new dual trench gate Emitter Switched Thyristor (DTG-EST) is proposed for improving snap-back effect which leads to a lot of serious problems of device applications. Also the parasitic thyristor that is inherent in the conventional EST is completely eliminated in this structure, allowing higher maximum controllable current densities for ESTs. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and 35A/$\textrm{cm}^2$, respectively. But the proposed DTG-EST exhibits snap-back with the anode voltage and current density 0.96V and 100A/$\textrm{cm}^2$, respectively.

700V Emitter Switched Thyristor(EST) with Dual Trench Gate (700V급 듀얼 트랜치 게이트를 가지는 Emitter Switched Thyristor(EST))

  • Kim, Dae-Won;Sung, Man-Young;Kang, Ey-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.27-30
    • /
    • 2003
  • In this paper, the new dual trench gate Emitter Switched Thyristor (DTG-EST) is proposed for improving snap-back effect which leads to a lot of serious problems of device applications. And the parasitic thyristor that is inherent in the conventional EST is completely eliminated in this structure, allowing higher maximum controllable current densities for ESTs. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and $35A/cm^2$, respectively. But the proposed DTG-EST exhibits snap-back with the anode voltage and current density 0.96V and $100A/cm^2$, respectively.

  • PDF

An Emitter Switched Thyristor with vertical series MOSFET structure (수직형 직렬 MOSFET 구조의 Emitter Switched Thyristor)

  • Kim, Dae-Won;Kim, Dae-Jong;Sung, Man-Young;Kang, Ey-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.392-395
    • /
    • 2003
  • For the first time, the new dual trench gate Emitter Switched Thyristor is proposed for eliminating snap-back effect which leads to a lot of serious problems of device applications. Also, the parasitic thyristor that is inherent in the conventional EST is completely eliminated in the proposed EST structure, allowing higher maximum controllable current densities for ESTs. Moreover, the new dual trench gate allows homogenous current distribution throughout device and preserves the unique feature of the gate controlled current saturation of the thyristor current. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and $354/{\S}^2$, respectively. But the proposed EST exhibits snap-back with the anode voltage and current density 0.93V and $58A/{\S}^2$, respectively. Saturation current density of the proposed EST at anode voltage 6.11V is $3797A/{\S}^2$. The characteristics of 700V forward blocking of the proposed EST obtained from two dimensional numerical simulations (MEDICI) is described and compared with that of the conventional EST.

  • PDF

Design and Fabrication of 1700 V Emitter Switched Thyristor (1700 V급 EST소자의 설계 및 제작에 관한 연구)

  • Kang, Ey-Goo;Ahn, Byoung-Sub;Nam, Tae-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.183-189
    • /
    • 2010
  • In this paper, the trench gate emitter switched thyristor(EST) withl trench gate electrode is proposed for improving snap-back effect which leads to a lot of problems in device applications. The parasitic thyristor which is inherent in the conventional EST is completely eliminated in this structure, allowing higher maximum controllable current densities for ESTs. The dual trench gate allows homogenous current distribution in the EST and preserves the unique feature of the gate controlled current saturation of the thyristor current. The characteristics of the 1700 V forward blocking EST obtained from two-dimensional numerical simulations (MEDICI) is described and compared with that of a conventional EST. we carried out layout, design and process of EST devices.