• Title/Summary/Keyword: differentiable mappings

Search Result 19, Processing Time 0.02 seconds

APPROXIMATION OF NEAREST COMMON FIXED POINTS OF ASYMPTOTICALLY I-NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Cho, Yeol-Je;Hussain, Nawab;Pathak, Hemant Kumar
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.483-498
    • /
    • 2011
  • In this paper, we introduce a new class of uniformly point-wise R-subweakly commuting self-mappings and prove several common fixed point theorems and best approximation results for uniformly point-wise R-subweakly commuting asymptotically I-nonexpansive mappings in normed linear spaces. We also establish some results concerning strong convergence of nearest common fixed points of asymptotically I-non-expansive mappings in reflexive Banach spaces with a uniformly G$\^{a}$teaux differentiable norm. Our results unify and generalize various known results given by some authors to a more general class of noncommuting mappings.

CONVERGENCE THEOREMS ON VISCOSITY APPROXIMATION METHODS FOR FINITE NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.85-98
    • /
    • 2009
  • Strong convergence theorems on viscosity approximation methods for finite nonexpansive mappings are established in Banach spaces. The main theorem generalize the corresponding result of Kim and Xu [10] to the viscosity approximation method for finite nonexpansive mappings in a reflexive Banach space having a uniformly Gateaux differentiable norm. Our results also improve the corresponding results of [7, 8, 19, 20].

  • PDF

STRONG CONVERGENCE OF GENERAL ITERATIVE ALGORITHMS FOR NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Jung, Jong Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.1031-1047
    • /
    • 2017
  • In this paper, we introduce two general iterative algorithms (one implicit algorithm and other explicit algorithm) for nonexpansive mappings in a reflexive Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm. Strong convergence theorems for the sequences generated by the proposed algorithms are established.

STRONG CONVERGENCE OF AN ITERATIVE METHOD FOR FINDING COMMON ZEROS OF A FINITE FAMILY OF ACCRETIVE OPERATORS

  • Jung, Jong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.381-393
    • /
    • 2009
  • Strong convergence theorems on viscosity approximation methods for finding a common zero of a finite family accretive operators are established in a reflexive and strictly Banach space having a uniformly G$\hat{a}$teaux differentiable norm. The main theorems supplement the recent corresponding results of Wong et al. [29] and Zegeye and Shahzad [32] to the viscosity method together with different control conditions. Our results also improve the corresponding results of [9, 16, 18, 19, 25] for finite nonexpansive mappings to the case of finite pseudocontractive mappings.

STRONG CONVERGENCE THEOREMS FOR LOCALLY PSEUDO-CONTRACTIVE MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.37-51
    • /
    • 2002
  • Let X be a reflexive Banach space with a uniformly Gateaux differentiable norm, C a nonempty bounded open subset of X, and T a continuous mapping from the closure of C into X which is locally pseudo-contractive mapping on C. We show that if the closed unit ball of X has the fixed point property for nonexpansive self-mappings and T satisfies the following condition: there exists z $\in$ C such that ∥z-T(z)∥<∥x-T(x)∥ for all x on the boundary of C, then the trajectory tlongrightarrowz$_{t}$$\in$C, t$\in$[0, 1) defined by the equation z$_{t}$ = tT(z$_{t}$)+(1-t)z is continuous and strongly converges to a fixed point of T as t longrightarrow 1 ̄.ow 1 ̄.

STRONG CONVERGENCE THEOREMS FOR INFINITE COUNTABLE NONEXPANSIVE MAPPINGS AND IMAGE RECOVERY PROBLEM

  • Yao, Yonghong;Liou, Yeong-Cheng
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.6
    • /
    • pp.1591-1600
    • /
    • 2008
  • In this paper, we introduce an iterative scheme given by infinite nonexpansive mappings in Banach spaces. We prove strong convergence theorems which are connected with the problem of image recovery. Our results enrich and complement the recent many results.

ITERATIVE ALGORITHMS WITH ERRORS FOR NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.771-790
    • /
    • 2006
  • The iterative algorithms with errors for nonexpansive mappings are investigated in Banach spaces. Strong convergence theorems for these algorithms are obtained. Our results improve the corresponding results in [5, 13-15, 23, 27-29, 32] as well as those in [1, 16, 19, 26] in framework of a Hilbert space.