AN INEQUALITY OF OSTROWSKI TYPE FOR MAPPINGS WHOSE SECOND DERIVATIVES BELONG TO $L_1(a,b)$ AND APPLICATIONS

P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City MC, Victoria 8001, Australia. E-mail: {pc, sever, johnr}@@matilda.vut.edu.au.

Abstract An inequality of Ostrowski type for twice differentiable mappings whose derivatives belong to $L_1(a,b)$ and applications in Numerical Integration and for special means (logarithmic mean, identric mean, p-logarithmic mean etc...) are given.

1. Introduction

In 1938, Ostrowski (see for example [3, p. 468]) proved the following integral inequality:

THEOREM 1. Let $f: I \subseteq \mathbf{R} \to \mathbf{R}$ be a differentiable mapping on I° (I° is the interior of I), and let $a, b \in I^{\circ}$ with a < b. If $f': (a,b) \to \mathbf{R}$ is bounded on (a,b), i.e., $||f'||_{\infty} := \sup_{t \in (a,b)} |f'(t)| < \infty$, then we have the inequality:

then we have the inequality (1.1)

$$\left| f(x) - \frac{1}{b-a} \int_a^b f(t)dt \right| \leq \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^2}{\left(b-a\right)^2} \right] \left(b-a\right) \|f'\|_{\infty}$$

for all $x \in [a, b]$. The constant $\frac{1}{4}$ is sharp in the sense that it can not be replaced by a smaller one.

Received August 21, 1998.

¹⁹⁹¹ AMS Subject Classification: 26D15, 41A55.

Key words and phrases: Ostrowski's Inequality, Numerical Integration, Special Means.

For some applications of Ostrowski's inequality to some special means and some numerical quadrature rules, we refer to the recent paper [1] by S.S. Dragomir and S. Wang.

In paper [2], the same authors considered another inequality of Ostrowski type for $\|\cdot\|_1$ norm as follows:

THEOREM 2. Let $f: I \subseteq \mathbf{R} \to \mathbf{R}$ be a differentiable mapping in I° and $a, b \in I^{\circ}$ with a < b. If $f' \in L_1[a, b]$, then we have the inequality:

$$(1.2) \left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left[\frac{1}{2} + \frac{|x - \frac{a+b}{2}|}{(b-a)} \right] ||f'||_{1}$$

for all $x \in [a, b]$.

They also pointed out some applications of (1.2) in Numerical Integration as well as for special means.

In 1976, G.V. Milovanović and J.E. Pečarić proved a generalization of Ostrowski's inequality for n-time differentiable mappings (see for example [3, p. 468]) from which we would like to mention only the case of twice differentiable mappings [3, p. 470]:

THEOREM 3. Let $f:[a,b] \to \mathbf{R}$ be a twice differentiable mapping such that $f'':(a,b)\to \mathbf{R}$ is bounded on (a,b), i.e., $||f''||_{\infty} = \sup_{t\in(a,b)} |f''(t)| < \infty$. Then we have the inequality:

$$\left| \frac{1}{2} \left[f(x) + \frac{(x-a)f(a) + (b-x)f(b)}{b-a} \right] - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|$$
(1.3)
$$\leq \frac{\|f''\|_{\infty}}{4} (b-a)^{2} \left[\frac{1}{12} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{\left(b-a\right)^{2}} \right]$$

for all $x \in (a, b)$.

In this paper we point out an inequality of Ostrowski type for twice differentiable mappings which is in terms of the $\|\cdot\|_1$ -norm of the second derivative f'' and apply it in numerical integration and for some special means such as: logarithmic mean, identric mean, p-logarithmic mean etc.

2. Some Integral Inequalities

The following inequality of Ostrowski's type for mappings which are twice differentiable, holds.

THEOREM 4. Let $f:[a,b] \to \mathbf{R}$ be continuous on [a,b], twice differentiable on (a,b) and $f'' \in L_1(a,b)$. Then we have the inequality:

(2.1)
$$\left| f(x) - \frac{1}{b-a} \int_a^b f(t) dt - \left(x - \frac{a+b}{2} \right) f'(x) \right|$$

$$\leq \frac{1}{2(b-a)} \left(\left| x - \frac{a+b}{2} \right| + \frac{1}{2} (b-a) \right)^2 \|f''\|_1 \leq \frac{b-a}{2} \|f''\|_1$$

for all $x \in [a, b]$.

Proof. Let us define the mapping $K(\cdot,\cdot):\left[a,b\right]^{2}\to\mathbf{R}$ given by

$$K\left(x,t
ight) := \left\{ egin{array}{ll} \displaystyle rac{\left(t-a
ight)^2}{2} & ext{if } t \in [a,x] \ \displaystyle rac{\left(t-b
ight)^2}{2} & ext{if } t \in (x,b] \, . \end{array}
ight.$$

Integrating by parts, we have successively

$$\int_{a}^{b} K(x,t) f''(t) dt = \int_{a}^{x} \frac{(t-a)^{2}}{2} f''(t) dt + \int_{x}^{b} \frac{(t-b)^{2}}{2} f''(t) dt$$

$$= \frac{(t-a)^{2}}{2} f'(t) \Big|_{a}^{x} - \int_{a}^{x} (t-a) f'(t) dt$$

$$+ \frac{(t-b)^{2}}{2} f'(t) \Big|_{x}^{b} - \int_{x}^{b} (t-b) f'(t) dt$$

$$= \frac{(x-a)^{2}}{2} f'(x) - \left[(t-a) f(t) \Big|_{a}^{x} - \int_{a}^{x} f(t) dt \right]$$

$$- \frac{(b-x)^{2}}{2} f'(x) - \left[(t-b) f(t) \Big|_{x}^{b} - \int_{x}^{b} f(t) dt \right]$$

$$= \frac{1}{2} \left[(x-a)^{2} - (b-x)^{2} \right] f'(x) - (x-a) f(x)$$

$$+ \int_{a}^{x} f(t) dt + (x-b) f(x) + \int_{x}^{b} f(t) dt$$

$$= (b-a) \left(x - \frac{a+b}{2} \right) f'(x) - (b-a) f(x) + \int_{a}^{b} f(t) dt$$

from where we get the integral identity:

$$\int_{a}^{b} f(t) dt = (b - a) f(x) - (b - a) \left(x - \frac{a + b}{2} \right) f'(x)$$

$$+ \int_{a}^{b} K(x, t) f''(t) dt$$

for all $x \in [a, b]$, which is interesting in itself, too.

Using the identity (2.2) we have

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt - \left(x - \frac{a+b}{2} \right) f'(x) \right|$$

$$= \frac{1}{b-a} \left| \int_{a}^{b} K(x,t) f''(t) dt \right|$$

$$= \frac{1}{b-a} \left| \int_{a}^{x} \frac{(t-a)^{2}}{2} f''(t) dt + \int_{x}^{b} \frac{(t-b)^{2}}{2} f''(t) dt \right|$$

$$\leq \frac{1}{b-a} \left[\int_{a}^{x} \frac{(t-a)^{2}}{2} |f''(t)| dt + \int_{x}^{b} \frac{(t-b)^{2}}{2} |f''(t)| dt \right]$$

$$\leq \frac{1}{b-a} \left[\frac{(x-a)^{2}}{2} \int_{a}^{x} |f''(t)| dt + \frac{(b-x)^{2}}{2} \int_{x}^{b} |f''(t)| dt \right]$$

$$\leq \frac{1}{b-a} \max \left\{ \frac{(x-a)^{2}}{2}, \frac{(b-x)^{2}}{2} \right\}$$
(2.3)
$$\times \left[\int_{a}^{x} |f''(t)| dt + \int_{x}^{b} |f''(t)| dt \right].$$

Now, let observe that

$$\max \left\{ \frac{(x-a)^2}{2}, \frac{(b-x)^2}{2} \right\}$$

$$= \frac{1}{2} \frac{(x-a)^2 + (b-x)^2 + \left| (b-x)^2 - (x-a)^2 \right|}{2}$$

$$= \frac{1}{2} \left[\frac{(x-a)^2 + (b-x)^2}{2} + (b-a) \left| x - \frac{a+b}{2} \right| \right]$$

$$= \frac{1}{2} \left[\frac{1}{4} (b-a)^2 + \left(x - \frac{a+b}{2} \right)^2 + (b-a) \left| x - \frac{a+b}{2} \right| \right]$$

$$= \frac{1}{2} \left(\left| x - \frac{a+b}{2} \right| + \frac{1}{2} (b-a) \right)^2.$$

Using (2.3) we deduce the desired inequality (2.1).

COROLLARY 5. Let f be as above. Then we have the mid-point inequality:

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_a^b f\left(t\right) dt \right| \leq \frac{1}{8} \left(b-a\right) \left\| f'' \right\|_1.$$

The following trapezoid inequality also holds:

COROLLARY 6. Under the above assumptions we have:

$$(2.5) \left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(t) dt - \frac{b - a}{4} (f'(b) - f'(a)) \right|$$

$$\leq \frac{1}{2} (b - a) ||f''||_{1}.$$

Proof. Choose in (2.1) x = a and x = b to get:

$$\left| f\left(a\right) - \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt + \frac{b-a}{2} f'\left(a\right) \right| \leq \frac{b-a}{2} \left\| f'' \right\|_{1}$$

and

$$\left|f\left(b\right)-\frac{1}{b-a}\int_{a}^{b}f\left(t\right)dt-\frac{b-a}{2}f'\left(b\right)\right|\leq\frac{b-a}{2}\left\|f''\right\|_{1}.$$

Adding the above two inequalities, using the triangle inequality and dividing by 2, we get the desired inequality (2.5).

3. Applications in Numerical Integration

Let $I_n: a=x_0 < x_1 < \ldots < x_{n-1} < x_n = b$ be a division of the interval $[a,b], \xi_i \in [x_i,x_{i+1}] \ (i=0,\cdots,n-1)$. We have the following quadrature formula:

THEOREM 7. Let $f:[a,b] \to \mathbf{R}$ be continuous on [a,b] and twice differentiable on (a,b), whose second derivative $f'':(a,b) \to \mathbf{R}$ belongs to $L_1(a,b)$, i.e., $||f''||_1 := \int_a^b |f''(t)| dt < \infty$. Then the following perturbed Riemann's type quadrature formula holds:

(3.1)
$$\int_{a}^{b} f(x) dx = A(f, f', \xi, I_{n}) + R(f, f', \xi, I_{n})$$

where

$$A(f, f', \xi, I_n) = \sum_{i=0}^{n-1} h_i f(\xi_i) - \sum_{i=0}^{n-1} f'(\xi_i) \left(\xi_i - \frac{x_i + x_{i+1}}{2} \right) h_i$$

and the remainder satisfies the estimation: (3.2)

$$|R(f, f', \xi, I_n)| \le \frac{1}{2} \left[\frac{1}{2} \nu(h) + \sup_{i=0,\cdots,n-1} \left| \xi_i - \frac{x_i + x_{i+1}}{2} \right| \right]^2 ||f''||_1$$

$$\leq \frac{\nu^2\left(h\right)}{2} \left\|f''\right\|_1$$

for all ξ_i as above, where $\nu\left(h\right) = \max\left\{x_{i+1} - x_i | i = 0, \cdots, n-1\right\}$.

Proof. Apply Theorem 4 on the interval $[x_i, x_{i+1}]$ $(i = 0, \dots, n-1)$ to get

$$\left| \int_{x_{i}}^{x_{i+1}} f(t) dt - h_{i} f(\xi_{i}) + \left(\xi_{i} - \frac{x_{i} + x_{i+1}}{2} \right) f'(\xi_{i}) \right|$$

$$\leq \frac{1}{2} \left(\left| \xi_{i} - \frac{x_{i} + x_{i+1}}{2} \right| + \frac{1}{2} (x_{i+1} - x_{i}) \right)^{2} \int_{x_{i}}^{x_{i+1}} |f''(t)| dt.$$

Summing over i from 0 to n-1 and using the generalized triangle

inequality we deduce:

$$|R(f, f', \xi, I_n)| \leq \frac{1}{2} \sum_{i=0}^{n-1} \left[\frac{1}{2} (x_{i+1} - x_i) + \left| \xi_i - \frac{x_i + x_{i+1}}{2} \right| \right]^2$$

$$\times \int_{x_i}^{x_{i+1}} |f''(t)| dt$$

$$\leq \frac{1}{2} \sup_{i=0,\dots,n-1} \left[\frac{1}{2} (x_{i+1} - x_i) + \left| \xi_i - \frac{x_i + x_{i+1}}{2} \right| \right]^2$$

$$\times \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} |f''(t)| dt$$

$$\leq \frac{1}{2} \left[\frac{1}{2} \nu(h) + \sup_{i=0,\dots,n-1} \left| \xi_i - \frac{x_i + x_{i+1}}{2} \right| \right]^2 ||f''||_1$$

and the estimation (3.2) is obtained.

REMARK 1. If we choose above $\xi_i = \frac{x_i + x_{i+1}}{2}$, we recapture the midpoint quadrature formula

$$\int_{a}^{b} f(x) dx = A_{M}(f, I_{n}) + R_{M}(f, I_{n})$$

where the remainder $R_M(f, I_n)$ satisfies the estimation

$$|R_M(f,I_n)| \le \frac{1}{8}\nu^2(h) ||f''||_1.$$

4. Applications for Special Means

Let us recall the following means:

(a) The arithmetic mean

$$A=A\left(a,b\right) :=\frac{a+b}{2},\qquad a,b\geq 0;$$

(b) The geometric mean:

$$G = G(a, b) := \sqrt{ab}, \qquad a, b \ge 0;$$

(c) The harmonic mean:

$$H = H(a, b) := \frac{2}{\frac{1}{a} + \frac{1}{b}}, \quad a, b \ge 0;$$

(d) The logarithmic mean:

$$L = L(a,b) := \begin{cases} a & \text{if } a = b \\ \frac{b-a}{\ln b - \ln a} & \text{if } a \neq b \end{cases} \quad a, b > 0;$$

(e) The identric mean:

$$I = I\left(a, b\right) := \begin{cases} a & \text{if } a = b \\ \frac{1}{e} \left(\frac{b^b}{a^a}\right)^{\frac{1}{b-a}} & \text{if } a \neq b \end{cases} \quad a, b > 0;$$

(f) The p-logarithmic mean:

$$L_{p} = L_{p}\left(a, b\right) := \begin{cases} \left[\frac{b^{p+1} - a^{p+1}}{\left(p+1\right)\left(b-a\right)}\right]^{\frac{1}{p}} & \text{if } a \neq b; \\ a & \text{if } a = b \end{cases}$$

where, $p \in \mathbf{R} \setminus \{-1, 0\}$, a, b > 0.

The following simple relationships are known in the literature

$$H \leq G \leq L \leq I \leq A$$
.

It is also known that L_p is monotonically increasing in $p \in \mathbf{R}$ with $L_0 = I$ and $L_{-1} = L$.

EXAMPLE 1. Consider the mapping $f:(0,\infty)\to \mathbf{R}$, $f(x)=x^r$, $r\in \mathbf{R}\setminus\{-1,0\}$. Then we have for 0< a< b:

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = L_{r}^{r}(a,b)$$

and

$$||f''||_1 = |r(r-1)|(b-a)L_{r-1}^{r-1}(a,b).$$

Using the inequality (2.1) we get:

(4.1)
$$\left| x^{r} - L_{r}^{r} - r(x - A) x^{r-1} \right|$$

$$\leq \frac{1}{2} \left[\left| x - A \right| + \frac{1}{2} (b - a) \right]^{2} \left| r(r - 1) \right| L_{r-1}^{r-1}$$

for all $x \in [a, b]$. If in (4.1 we choose x = A, we get

$$(4.2) |A^r - L_r^r| \le \frac{|r(r-1)|(b-a)^2}{8} L_{r-1}^{r-1}.$$

EXAMPLE 2. Consider the mapping $f:(0,\infty)\to \mathbf{R}, f(x)=\frac{1}{x}$. Then we have for 0< a< b:

$$\frac{1}{b-a} \int_a^b f(x) dx = L^{-1}(a,b)$$

and

$$||f''||_1 = 2(b-a)L_{-3}^{-3}(a,b).$$

Using the inequality (2.1), we get:

$$\left|\frac{1}{x} - \frac{1}{L} + \frac{x-A}{x^2}\right| \leq L_{-3}^{-3} \left[\left|x-A\right| + \frac{1}{2}\left(b-a\right)\right]^2$$

which is equivalent to

$$(4.3) |x(L-x) + L(x-A)| \le x^2 L L_{-3}^{-3} \left[|x-A| + \frac{1}{2} (b-a) \right]^2$$

for all $x \in [a, b]$. Now, if we choose in (4.3), x = A, we get

$$(4.4) 0 \leq A - L \leq \frac{1}{4} A L L_{-3}^{-3} (b - a)^{2}.$$

If in (4.3) we choose x = L, we get

$$(4.5) 0 \le A - L \le L^2 L_{-3}^{-3} \left[L - A + \frac{1}{2} (b - a) \right]^2.$$

EXAMPLE 3. Let us consider the mapping $f(x) = \ln x$, $x \in [a, b] \subset (0, \infty)$. Then we have :

$$\frac{1}{b-a}\int_{a}^{b}f\left(x\right) dx=\ln I\left(a,b\right) ,$$

and

$$||f''||_1 = (b-a) L_{-2}^{-2}(a,b).$$

Then the inequality (2.1) gives us

(4.6)
$$\left| \ln x - \ln I - \frac{x - A}{x} \right| \le \frac{1}{2} \left[|x - A| + \frac{1}{2} (b - a) \right]^2 L_{-2}^{-2}$$

for all $x \in [a, b]$.

Now, if in (4.6) we choose x = A, we get

(4.7)
$$1 \le \frac{A}{I} \le \exp\left[\frac{1}{8} (b-a)^2 L_{-2}^{-2}\right].$$

If in (4.6) we choose x = I, we get

$$(4.8) 0 \le A - I \le \frac{I}{2} \left[A - I + \frac{1}{2} (b - a) \right]^2 L_{-2}^{-2}.$$

References

- 1. S.S. DRAGOMIR and S. WANG, Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math. Lett. 11 (1998), 105-109.
- S.S. DRAGOMIR and S. WANG, A new inequality of Ostrowski's type in L₁-norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math. 28 (1997), 239-244.
- D.S. MITRINOVIĆ, J.E. PEČARIĆ and A.M. FINK, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic, Dordrecht, 1994.