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Abstract An inequality of Ostrowski type for twice differentiable map-
pings whose derivatives belong to Li(a, b) and applications in Numerical Inte-
gration and for special means (logarithmic mean, identric mean, p-logarithmic
mean etc...) are given.

1. Introduction

In 1938, Ostrowski (see for example [3, p. 468]) proved the
following integral inequality:

THEOREM 1. Let f : I C R — R be a differentiable mapping
on I° (I° is the interior of I), and let a,b € I° witha < b. If f' :
(a,b) — R is bounded on (a,b), i.e., || f'll, = sup |[f (t)| < o0,

te(a,b)
then we have the inequality:
(1.1)
2
S Gl w0 :
flz) = — t)dt| < b—a
) s [0 < |3+ i |60l

for all z € [a,b]. The constant 7}‘ is sharp in the sense that it can
not be replaced by a smaller one.
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For some applications of Ostrowski’s inequality to some special
means and some numerical quadrature rules, we refer to the recent
paper [1] by S.8. Dragomir and S. Wang.

In paper [2], the same authors considered another inequality of
Ostrowski type for ||-||, norm as follows:

THEOREM 2. Let f: 1 C R — R be a differentiable mapping
in I° and a,b € I° witha < b. If f' € L, [a,b], then we have the

inequality:
NEEE
(1.2) ~—-———/ f@)at| < =) }Hf Il

for all € [a,b].

They also pointed out some applications of (1.2) in Numerical
Integration as well as for special means.

In 1976, G.V. Milovanovi¢ and J.E. Pecari¢ proved a generaliza-
tion of Ostrowski’s inequality for n-time differentiable mappings
(see for example [3, p. 468]) from which we would like to mention
only the case of twice differentiable mappings [3, p. 470]:

THEOREM 3. Let f : [a,b] — R be a twice differentiable
mapping such that f” : (a,b) — R is bounded on (a,b), i.e
1lf'lloc = sup |f”(t)] < co. Then we have the inequality:

te{a,b)
—a a - T b
-}Z-[m)ﬂ”” )f(b)jib >f<b)}_,bfa/af(t)dt
(1.3)
e 1, (-2’
S“T"’"“)z['ié‘*“@?fﬁ?]

for all z € (a,b).

In this paper we point out an inequality of Ostrowski type for
twice differentiable mappings which is in terms of the ||-||; -norm
of the second derivative f” and apply it in numerical integration
and for some special means such as : logarithmic mean, identric
mean, p-logarithmic mean etc.
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2. Some Integral Inequalities

The following inequality of Ostrowski’s type for mappings which
are twice differentiable, holds.

THEOREM 4. Let f : [a,b] & R be continuous on [a, b], twice
differentiable on (a,b) and f” € L, (a,b). Then we have the in-
equality:

(2.1) ‘f(w%—g%;/abf(t)dt-(w~a;b)f’(x)

b —

-2+ 3 0-0) I < R0,

<g5-a (3

for all z € [a, b].

Proof. Let us define the mapping K (-,-) : [a,b]* — R given by

(t —a)*

2
K (z,t) :=
(=" if t € (z,b].
2 b]

if t € [a, z]
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Integrating by parts, we have successively

b T 2 b 2
/ K (z,t) f" () dtz/ -@-«132— "( t)dt+/ g—iféﬂ-f"(t)dt

) 1) /(t ) I () d
o[ e-nroa
-E @ e-as0k- [ 104
b
B “‘”)fu {(t~b)f(t)!2-/f(t)dt}

(z-a)* = (b-2)"] ' (@) - (£ = 0) f (&)

+/xf(t)dt+ z —b) f (z) +/bf t)dt

=(b--a)(a: a+b)f’(x / £ () dt

B

from where we get the integral identity:

b
[10d=6-a70-t-a(s-52) s @
’ b

(2.2) +/ K (z,t) f" (t) dt

for all z € [a, b], which is interesting in itself, too.
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Using the identity (2.2) we have

~--:1_~Z/abf(t)dt—(

a+b\
b )1 (x)}
/ "K (@) £ (0 de

(4 )2 b 2
[ a0

/ U"a I (¢ hﬁ+/‘@‘ m%

£~ a) /If" o+ O /!f” t)ldt}

(z-a)® (b-2)°
m{ o 0-a)

T b
x [ / 7 (8] dt + / TZ (t)ldt}

Now, let observe that

max{(m;a)z’(b;x)z}
1(:L'—~a)2+(b~a:)2+’(b——w)z——(a:—a)2|
~ 2 2
[ 2 2
:% (z - a) ;—(b z) - )x__a;-bu
- 2
=5|56-0) +( -9{;——‘3) +(b~—a)x—-a;b”
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Using (2.3) we deduce the desired inequality (2.1).

COROLLARY 5. Let f be as above. Then we have the mid-point
inequality:

(2.4 ‘f(“*b) /'f ) <

The following trapezoid inequality also holds:

—a) |l

OOI*—-‘

COROLLARY 6. Under the above assumptions we have:

fla)+f(b

(25) | =~ T )~ S (@)

1
<5 (b-a)lf"l,.
Proof. Choose in (2.1) z = a and = = b to get:

b
Pwrwfa/fawt

"

"(a) ,<,b

and

221w < 52,

7 (b) - /‘f t)dt -

Adding the above two inequalities, using the triangle inequality
and dividing by 2, we get the desired inequality (2.5).

3. Applications in Numerical Integration

Let I, :a =29 <71 < .. < ZTp-1 < xp, = b be a division of
the interval [a,b], & € [z, Ti41] (i =0,--- ,n—1). We have the
following quadrature formula:
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THEOREM 7. Let f : [a,b] = R be continuous on [a,b] and
twice differentiable on (a, b) , whose second derivative " : (a,b) —

R belongs to L1 (a,b), i.e., |||, == [ 1f" (¢)|dt < oo. Then the
following perturbed Riemann’s type quadrature formula holds:

b
(3.1) / f(@)dz = A(f, f,6,1n) + R(f, £, €, In)

where
' = = / Ti + Tig
AU L6 =S hif (&) - 3 F (6) (5,- L

and the remainder satisfies the estimation:

(3.2)
, 111 T; + I 2 ,
IR(f, f 6T <5 |sv(h)+  sup & — —=——"2| [If"||,
212 =0, n—1 2
vi(h)
< 2 ILF1l
for all¢; as above, where v (h) = max {z;y; —z;/i=0,--- ,n—1}.

Proof. Apply Theorem 4 on the interval [z;,z;41] =0, -+,
n — 1) to get

[ rwa-nre+ (6 - 2 1@
1
< 2 (

Summing over i from 0 to n — 1 and using the generalized triangle

2 pmigs
rya-a) [0l

Ti +Tipa

& - 2L
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inequality we deduce :

1% T+ x; 2
‘R(f)f,7§7]n)* < 5;[ xz+1""1‘z + gi“—————z—-—ﬂ}
Tig1
< [l
;
< - A xssq — s _ = i
<GS [2(%“ ;) + € ___é.__._]
n-1 Zip1
<3 [
i=0 Y Ti
111 Ti+ Tig1 2 "
<zizv(h ;-
R [QU( )+z‘=0?l~l-r,)n—1 ¢ 2 } 71l

and the estimation (3.2) is obtained.

REMARK 1. If we choose above ¢; = &%ﬁﬂ, we recapture the
midpoint quadrature formula

b
/'f@»m~=AMcnu)+RM(ﬂLa

where the remainder Ry (f, I,) satisfies the estimation

(R (£, )| < g2 (B) 15"

4. Applications for Special Means
Let us recall the following means :
(a) The arithmetic mean

a+b

A= A(a,b):= 5 a,b>0;

(b) The geometric mean:

GzG(a,b):::\/cE, a,b>0;
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(¢) The harmonic mean:

HzH(a,b)::121, a,b>0;
PR
(d) The logarithmic mean:
{ a ifa=0»
L = L(a,b):= b—a ] a,b>0;
Inb—-1na ifa 70
(e) The identric mean:
a ifa=15
I=1(ab):= b\ 5= a,b>0;
é (%) ifa#b

(f) The p-logarithmic mean:

pptt . gptl 5
a } if @ # b;

Ly =Ly (a,b) := [(P+1)(b“a)
a ifa=1»

where, p € R\ {-1,0},a,b > 0.
The following simple relationships are known in the literature

H<GLL<LILA

It is also known that L, is monotonically increasing in p € R
with Lo =1 and L_; = L.

ExaMPLE 1. Consider the mapping f : (0,00) — R, f(z) =
z", r € R\ {-1,0}. Then we have for 0 < a < b:

b
E—}Ta—/ f(z)dx = L] (a,b)
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and
1"l =Ir(r=1)] (b~ a) L::i (a,b).
Using the inequality (2.1) we get :

(4.1) lz" — L] —r(z— A) 2"}
1 2
<5 (lz-Al+3 (b ~a)| |r(r=1)|L7
for all « € [a,b]. If in (4.1 we choose = = A, we get
2
(4.2) a7~ gy g OO0

EXAMPLE 2. Consider the mapping f : (0,00) & R, f(z) =
Then we have for 0 <a < b:

b
/ f(z)dz = L™ (a,b)

b—aJ,

and

1£"ll; = 2 (0~ a) LZ3 (a, ).
Using the inequality (2.1), we get :
1 1 z-A

) 1 2
———r — — s o e -d n— m— —
P A g [ L~5 {Iw Al + 2 (b a)]

which is equivalent to

(4.3) |z(L—z)+ Lz~ A)| < 2?LL~3 [Im«—AI-}— —(b-—-a)r
for all z € [a,b]. Now, if we choose in (4.3), z = A, we get
(4.4) 0<A-L< %ALL:ﬁ (b—a)*.

If in (4.3) we choose z = L, we get

2
(4.5) 0<A-L<L*L73 .L-A+%(b-—a)] :
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EXAMPLE 3. Let us consider the mapping f(z) = Inz, z €
[a,b] C (0,00). Then we have :

b
b-l—a/ f(z)dz =1nI(a,b),

and
171, = (b~ a) LZ3(a,b).
Then the inequality (2.1) gives us

r— A

(4.6) Inz~1Inl -

for all z € [a,d].
Now, if in (4.6) we choose z == A, we get

(4.7) 1< ? < exp [% (b a)szg} |

If in (4.6) we choose z = I, we get

2
(4.8) 03A—I§—§-[A~I+%(b-a)} :g.
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