References
- R. P. Agarwal, D. O'Regan, and D. R. Sagu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, 2009.
- V. Barbu and Th. Precupanu, Convexity and Optimization in Banach spaces, Editura Academiei R. S. R. Bucharest, 1978.
- F. E. Browder, Fixed point theorems for noncompact mappings in Hilbert spaces, Proc. Natl. Acad. Sci. U.S.A. 532 (1965), 1272-1276.
-
G. Cai and C. S. Hu, Strong convergence theorems of a general iterative process for a finite family of
${\lambda}_i$ pseudocontraction in q-uniforly smooth Banach spaces, Comput. Math. Appl. 59 (2010), no. 1, 149-160. https://doi.org/10.1016/j.camwa.2009.07.068 - M. M. Day, Normed Linear Spaces, 3rd ed. Springer-Verlag, Berlin-New York, 1973.
- K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374. https://doi.org/10.1007/BF01171148
- K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, Inc. New York and Basel, 1984.
- G. Marino and H. K. Xu, A general iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl. 318 (2006), no. 1, 43-52. https://doi.org/10.1016/j.jmaa.2005.05.028
- A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000), no. 1, 46-55. https://doi.org/10.1006/jmaa.1999.6615
- S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), no. 1, 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
- T. Suzuki, A sufficient and necessary condition for Halpern-type strong convergence to fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 135 (2007), no. 1, 99-106. https://doi.org/10.1090/S0002-9939-06-08435-8
- W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, 2000.
- R. Wangkeeree, N. Petrot, and R. Wangkeeree, The general iterative methods for nonexpansive mappings in Banach spaces, J. Global Optim. 51 (2011), no. 1, 27-46. https://doi.org/10.1007/s10898-010-9617-6
- H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), no. 1, 240-256. https://doi.org/10.1112/S0024610702003332
- H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003), no. 3, 659-678. https://doi.org/10.1023/A:1023073621589
- H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006), no. 2, 631-643. https://doi.org/10.1016/j.jmaa.2005.04.082