• Title/Summary/Keyword: crossover temperature

Search Result 60, Processing Time 0.029 seconds

Crossover Temperature and Ignition Delay Time of Diluted Hydrogen-Air Mixtures (희석된 수소-공기 혼합기의 크로스오버 온도와 점화지연시간)

  • Dong Youl, Lee;Eui Ju, Lee
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.18-24
    • /
    • 2022
  • Hydrogen is a clean fuel and is used in many applications in power systems such as fuel cells. It has unique properties such as wide flammability, high burning velocity, and difficulty to liquefy, which lead to critical safety issues. Fire and explosion are the most frequently occurring accidents and one of the major reasons is autoignition. In the ignition process, the chemistry of hydrogen combustion depends mainly on radical pools, and the temperature at which chain-branching and terminating rates are equal is called the crossover temperature. This study addresses the homogeneous autoignition of diluted hydrogen-air mixtures to investigate the effects of dilution on the crossover temperature to prevent explosions in the future. The new criterion for crossover temperature is introduced by only hydrogen radicals to adjust more simply. The detailed calculations indicate that the crossover temperatures are low at high dilutions of carbon dioxide and nitrogen because the concentrations of active radicals are reduced when an inert gas is added. This result is expected to contribute to hydrogen safety and realize a hydrogen society in the future.

Characterization of Methanol Crossover through Nafion Membranes by Direct Cell Performance Measurement

  • Park, Kyung-Won;Kim, Young-Min;Kwon, Bu-kil;Choi, Jong-Ho;Park, In-Su;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.4
    • /
    • pp.226-231
    • /
    • 2002
  • Power densities produced by the permeation of methanol through membranes were directly measured by inserting the membrane in front of anode in a membrane-electrode-assembly of a direct methanol fuel cell (DMFC). The power density was closely related to the loss of power in the DMFC and was strongly affected by temperature. As the cell temperature was increased, the power density resulting from methanol crossover was increased. The increase in methanol crossover had be attributed to diffusion caused or affected by temperature. Methanol crossover a major effect on the performance of a DMFC at a relatively low temperature with $26\%\;loss\;at\;30^{\circ}C$. In order to reduce methanol crossover, a conventional Nafion membrane was modified by the incorporation of Pt or Pd. The reduction in methanol crossover was investigated in these modified membranes by our cell performance measurement. Pt and Pd particles incorporated in the Nafion membranes block methanol pathway and prevent methanol transport through the membranes, which was proved by combining with liquid chromatography.

A Study on Adhesion Performance of Styrene-Block-Copolymer Based Hot Melt Pressure Sensitive Adhesives with Dicyclopentadiene Based Hydrogenated Hydrocarbon Resins (수첨 DCPD계 석유수지를 이용한 SBCs계 핫멜트점착제의 접착성능 연구)

  • Shim, Jaeho;Kim, Yunho;Lee, Jungjoon
    • Journal of Adhesion and Interface
    • /
    • v.15 no.4
    • /
    • pp.145-150
    • /
    • 2014
  • Dicyclopentadiene (DCPD)-based hydrocarbon resins are widely used as tackifiers in many applications. In particular, hydrogenated DCPD-based hydrocarbon resins are widely used in premium hot-melt-type adhesives such as hot melt adhesives (HMAs) and/or hot melt pressure-sensitive adhesives (HMPSAs), because are water-white in color and possess excellent stability to light and heat. This article discusses the adhesive performance of various hydrogenated DCPD resins when they are used as tackifiers in styrene-block-copolymer (SBC)-based HMPSAs. This article shows the correlation between the characteristics of tackifiers and the adhesive performance of SBC-based HMPSAs. The higher the softening point of the tackifier, the higher is the $T_g$, softening point, and crossover temperature of the PSAs. High aromatic H wt% content reduces the high-temperature resistance of PSAs, as suggested by the decrease in the crossover temperature and softening point of the PSAs.

Effect of curing temperature and blast furnace slag concrete on concrete strength development (양생온도가 고로슬래그 콘크리트의 강도발현에 미치는 영향분석)

  • Lee, Kyu-Dong;Jun, Myeong-Il;Lee, Chang-Soo;Kim, Dong-Sik
    • Journal of the Society of Disaster Information
    • /
    • v.2 no.1
    • /
    • pp.129-137
    • /
    • 2006
  • The present work is attempt to evaluate the temperature dependence of blast furnace slag concrete(BFSC) based on the concrete strength cured with different curing temperatures and ages. A equivalent substitution index(ESI) was induced to explain temperature dependence of concrete quantitatively as well as concrete strength. The results from compressive strength showed substantial crossover effect. which is the phenomenon that the compressive strength cured at low temperature becomes stronger than the one cured at high temperature. The crossover effect found more definitely on BFSC than plain concrete.. The ESI became 1.1 and 1.0 for the BFSC cured at $20^{\circ}C$ and $30^{\circ}C$ after age of 56 days, respectively. Which means that the contribution to strength development of blast furnace slag per unit mass is stronger than that of the Portland cement. It was considered therefore that the optimum curing temperature for BFSC is $20^{\circ}C$.

  • PDF

Effect of Temperature on Electrochemical Degradation of Membrane in PEMFC (PEMFC 고분자 막의 전기화학적 열화에 미치는 온도의 영향)

  • Lee, Ho;Kim, Taehee;Son, Ik Jae;Lee, Jong Hyun;Lim, Tae Won;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.441-445
    • /
    • 2009
  • Effect of temperature on membrane degradation in PEMFCs was studied. After cell operation at different temperatures($60{\sim}90^{\circ}C$) under accelerating degradation conditions(OCV, anode dry, cathode RH 65%) for 144 h, cell performance decreased from 12 to 35%. The results of FER in effluent water showed that this decrease in cell performance was caused by membrane degradation by the attack of $H_2O_2$ or oxygen radicals(${\cdot}OH$, $HO_2{\cdot}$) and that resulted in increase in gas crossover for radical formation. Radical formation on the electrode was confirmed by ESR. Activation energy of 66.2 kJ/mol was obtained by Arrhenius plot used to analyze the effect of temperature on membrane degradation. Increase of cell temperature enhanced gas crossover rate, radical formation rate and membrane degradation rate.

Iron-Chrome Crossover through Nafion Membrane in Iron-Chrome Redox Flow Battery (철-크롬 산화환원흐름전지에서 Nafion막의 철-크롬 Crossover)

  • Kim, Young-Sook;Oh, So-Hyeong;Kim, Eunbi;Kim, Dayoung;Kim, Seongji;Chu, Cheun-Ho;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.24-28
    • /
    • 2018
  • The redox flow battery (RFB) is a large-capacity energy storage equipment, and the vanadium redox flow cell is a typical RFB, but VRFB is expensive. Iron-chrome RFBs are economical because they use low-cost active materials, but their low performance is a urgent problem. In this study, the crossover of iron and chromium ion through Nafion membrane and the stability of Nafion membrane in HCl solution were investigated. The permeability of iron and chrome ion through Nafion were $5.5{\times}10^{-5}$ and $6.0{\times}10^{-5}cm^2/min$, respectively, which was 18.9~20.7 times higher than that of vanadium ion ($2.9{\times}10^{-6}cm^2/min$). The crossover of iron and chromium ions were shown to be a cause of performance decrease in Iron-chrome RFB. As the temperature increases, the crossover increases rapidly (activation energy 38.8 kJ/ mol), indicating that operation at low temperature is a methode to reduce the performance loss due to crossover. Nafion membranes were relatively stable in 3 M HCl solution.

Transient rheological probing of PIB/hectorite-nanocomposites

  • Sung, Jun-Hee;Mewis, Jan;Moldenaers, Paula
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • Clay suspensions in liquid polymers exhibit a time-dependent behaviour that includes viscoelastic as well as thixotropic features. Because of the presence of interacting clay platelets, particulate networks can develop, which are broken down during flow and rebuild upon cessation of the flow. Here, the use of thixotropic techniques in probing flow-induced structures in nanocomposites is explored with data on a hectorite-poly(isobutylene) model system. By means of fast stress jump measurements the hydrodynamic contributions to the steady state stresses are determined as well as those caused by the stretching of the clay floes. Flow reversal measurements do not provide a clear indication of flow-induced anisotropy in the present case. The recovery of the clay microstructure upon cessation of flow is followed by means of overshoot and dynamic measurements. The development of a particulate network is detected by the appearance and growth of a low frequency plateau of the storage moduli. The modulus-frequency curves after various rest times collapse onto universal master curves, regardless of the pre-shear history or temperature. The scaling factors for this master curve are the crossover parameters. The crossover moduli are nearly a linear function of the crossover frequency, the relation being identical for recovery after shearing at different shear rates. This function depends, however, on temperature.

Investigation of Factors Influencing Methanol Crossover in Direct Methanol Fuel Cell (직접메탄올연료전지에서 메탄올 크로스오버에 미치는 인자 연구)

  • Hyun, Min-Soo;Kim, Sang-Kyung;Lim, Seong-Yop;Lee, Byung-Rock;Peck, Dong-Hyun;Jung, Doo-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.6-10
    • /
    • 2008
  • The amount of methanol crossover was measured with changing the operating condition by using a liquid methanol concentration sensor. Appropriate operating condition was discussed in terms of methanol crossover. Mechanism of methanol crossover was classified into three items which are diffusion, convection and electro-osmosis. Contribution of each mechanism to methanol crossover and the effect of operating condition were analyzed with varying methanol concentration, pressure difference between anode and cathode, current, temperature, and stoichiometry of anode fuel. Among the three mechanisms diffusion affected mostly and electro-osmosis effect was observed only under high methanol concentration.

Effects of the Operating Conditions on the Performance of Direct Methanol Fuel Cells (직접메탄올 연료전지의 운전 조건이 성능에 미치는 영향)

  • Han, Chang-Hwa;Kim, Nam-Hoon;Lee, Joong-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.3
    • /
    • pp.292-298
    • /
    • 2011
  • This study examines the effects of the ambient temperature (AT), methanol feeding temperature (MFT), methanol concentration (MC) and methanol flow rate (MFR) on the performance and cell temperature (CT) of a 5-stacked direct methanol fuel cell (DMFC). The AT, MFT, MC, and MFR are varied from $-10^{\circ}C$ to $+40^{\circ}C$, $50^{\circ}C$ to $90^{\circ}C$, 0.5M to 3.0M and 11.7 mL $min^{-1}$ to 46.8 mL $min^{-1}$, respectively. The performance of the DMFC under various operating conditions is analyzed from the I-V polarization curve, and the methanol crossover is estimated by gas chromatography (GC). The performance of the DMFC improves significantly with increasing AT. The open circuit voltage (OCV) decreases with increasing MC due to the enhanced likelihood of methanol crossover. The cell performance is improved significantly when the MFR is increased from 11.7 mL $min^{-1}$ to 28.08 mL $min^{-1}$. The change in cell performance is marginal with further increases in MFR. The CT increases significantly with increasing AT. The effect of the MFT and MFR is moderate, and the effect of MC is marginal on the CT of the DMFC.

A Study on the Temperature Variation Characteristics of Power VDMOSFET (전력 VDMOSFET의 온도변화 특성에 관한 연구)

  • Lee, Woo-Sun
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.7
    • /
    • pp.278-284
    • /
    • 1986
  • Double-diffused metal oxide power semiconductor field effect transistors are used extensively in recent years in various circuit applications. The temperature variation of the drain current at a fixed bias shows both positive and negative resistance characteristics depending on the gate threshold voltage and gate-to source bias votage. In this paper, the decision method of the gate crossover voltage by the temperature variation and a new method to determine the gate threshold voltage graphecally are presented.

  • PDF