DOI QR코드

DOI QR Code

Characterization of Methanol Crossover through Nafion Membranes by Direct Cell Performance Measurement

  • Park, Kyung-Won (Department of Materials Science and Engineering, Kwangju Institute of Science and Technology(K-JIST)) ;
  • Kim, Young-Min (Department of Materials Science and Engineering, Kwangju Institute of Science and Technology(K-JIST)) ;
  • Kwon, Bu-kil (Department of Materials Science and Engineering, Kwangju Institute of Science and Technology(K-JIST)) ;
  • Choi, Jong-Ho (Department of Materials Science and Engineering, Kwangju Institute of Science and Technology(K-JIST)) ;
  • Park, In-Su (Department of Materials Science and Engineering, Kwangju Institute of Science and Technology(K-JIST)) ;
  • Sung, Yung-Eun (Department of Materials Science and Engineering, Kwangju Institute of Science and Technology(K-JIST))
  • Published : 2002.11.01

Abstract

Power densities produced by the permeation of methanol through membranes were directly measured by inserting the membrane in front of anode in a membrane-electrode-assembly of a direct methanol fuel cell (DMFC). The power density was closely related to the loss of power in the DMFC and was strongly affected by temperature. As the cell temperature was increased, the power density resulting from methanol crossover was increased. The increase in methanol crossover had be attributed to diffusion caused or affected by temperature. Methanol crossover a major effect on the performance of a DMFC at a relatively low temperature with $26\%\;loss\;at\;30^{\circ}C$. In order to reduce methanol crossover, a conventional Nafion membrane was modified by the incorporation of Pt or Pd. The reduction in methanol crossover was investigated in these modified membranes by our cell performance measurement. Pt and Pd particles incorporated in the Nafion membranes block methanol pathway and prevent methanol transport through the membranes, which was proved by combining with liquid chromatography.

Keywords

References

  1. Platinum Met. Rev. v.40 M. P. Hogarth;G. A. Hards
  2. J. Electrochem. Soc. v.138 T. E. Springer;T. A. Zawodzinski;S. Gottesfeld https://doi.org/10.1149/1.2085971
  3. J. Electrochem. Soc. v.148 G. J. M. Janssen https://doi.org/10.1149/1.1415031
  4. J. Electrochem. Soc. v.147 V. Tricoli;N. Carretta;M. Bartolozzi https://doi.org/10.1149/1.1393351
  5. J. Power Sources v.84 A. Heinzel;V. M. Barragan https://doi.org/10.1016/S0378-7753(99)00302-X
  6. J. Electrochem. Soc. v.143 M. K. Ravikumar;A. K. Shukla https://doi.org/10.1149/1.1837054
  7. J. Power Sources v.83 K. Scott;W. M. Taama;P. Argyropoulos;K. Sundmacher https://doi.org/10.1016/S0378-7753(99)00303-1
  8. Chem. Lett. H. Uchida;Y. Mizuno;M. Watanabe
  9. J. Electrochem. Soc. v.148 L. J. Hobson;H. Ozu;M. Yamaguchi;S. Hayase https://doi.org/10.1149/1.1402980
  10. J. Electrochem. Soc. v.149 S. -A. Lee;K. -W. park;B. -K. Kwon;Y. -E. Sung https://doi.org/10.1149/1.1502685
  11. J. Power Sources v.109 K. -W. Park;H. -J. Ahn;Y. -E. Sung https://doi.org/10.1016/S0378-7753(02)00165-9
  12. J. Power Sources v.109 K. -W. Park;B. -K. Kwon;J. -H. Choi;I. -S. Park;Y. -M. Kim;Y. -E. Sung https://doi.org/10.1016/S0378-7753(02)00100-3
  13. J. Electrochem. Soc. v.143 M. Watanabe;H. Uchida;Y. Seki;M. Emori;P. Stonehart https://doi.org/10.1149/1.1837307
  14. Analyst v.123 S. A. Sheppard;S. A. Campbell;J. R. Smith;G. W. Lloyd;T. R. Ralph;F. C. Walsh https://doi.org/10.1039/a803310b
  15. J. Phys. Chem. B v.106 K. -W. Park;J. -H. Choi;B. -K. Kwon;S. -A. Lee;Y. -E. Sung;H. -Y. Ha;S. -A. Hong;H. Kim;A. Wieckowski https://doi.org/10.1021/jp013168v
  16. J. Electrochem. Soc. v.148 X. Ren;S. Gottefeld https://doi.org/10.1149/1.1344521
  17. J. Electrochem. Soc. v.145 M. Watanabe;H. Uchida;M. Emori https://doi.org/10.1149/1.1838429
  18. U.S. Patent v.3 no.393 A. J. Hartner;M. A. Vertes
  19. U.S. Patent v.3 no.497 N. D. Greene;H. J. Cleary;L. Lederer
  20. J. Electrochem. Soc. v.144 P. L. Cabot;M. Centellens;L. Segarra;J. Casado https://doi.org/10.1149/1.1838086
  21. P. L. Cabot, M. Centellens, L. Segarra, and J. Casado, J. Electrochem. Soc., 144, 3749 (1997). https://doi.org/10.1149/1.1838086

Cited by

  1. Effect of Electrochemical Reduction of Ruthenium Black Cathode Catalyst on the Performance of Polymer Electrolyte Membrane Fuel Cells vol.14, pp.2, 2011, https://doi.org/10.5229/JKES.2011.14.2.110