DOI QR코드

DOI QR Code

Iron-Chrome Crossover through Nafion Membrane in Iron-Chrome Redox Flow Battery

철-크롬 산화환원흐름전지에서 Nafion막의 철-크롬 Crossover

  • Kim, Young-Sook (ETIS Co) ;
  • Oh, So-Hyeong (Department of Chemical Engineering, Sunchon National University) ;
  • Kim, Eunbi (Department of Chemical Engineering, Sunchon National University) ;
  • Kim, Dayoung (Department of Chemical Engineering, Sunchon National University) ;
  • Kim, Seongji (Department of Chemical Engineering, Sunchon National University) ;
  • Chu, Cheun-Ho (ETIS Co) ;
  • Park, Kwonpil (Department of Chemical Engineering, Sunchon National University)
  • Received : 2017.09.15
  • Accepted : 2017.10.16
  • Published : 2018.02.01

Abstract

The redox flow battery (RFB) is a large-capacity energy storage equipment, and the vanadium redox flow cell is a typical RFB, but VRFB is expensive. Iron-chrome RFBs are economical because they use low-cost active materials, but their low performance is a urgent problem. In this study, the crossover of iron and chromium ion through Nafion membrane and the stability of Nafion membrane in HCl solution were investigated. The permeability of iron and chrome ion through Nafion were $5.5{\times}10^{-5}$ and $6.0{\times}10^{-5}cm^2/min$, respectively, which was 18.9~20.7 times higher than that of vanadium ion ($2.9{\times}10^{-6}cm^2/min$). The crossover of iron and chromium ions were shown to be a cause of performance decrease in Iron-chrome RFB. As the temperature increases, the crossover increases rapidly (activation energy 38.8 kJ/ mol), indicating that operation at low temperature is a methode to reduce the performance loss due to crossover. Nafion membranes were relatively stable in 3 M HCl solution.

산화환원흐름전지(Redox Flow Battery, RFB)는 대용량 에너지 저장장치로 바나듐 산화환원흐름전지가 대표적인 RFB인데, VRFB는 고가인 점이 문제다. 철-크롬RFB는 저가의 활물질을 사용해 경제적인 점이 장점인데, 성능이 낮은 점이 해결해야할 과제다. 낮은 성능의 한 원인이 활물질의 크로스오버인데, 본 연구에서 철과 크롬 이온의 Nafion 막 크로스오버 및 Nafion 막의 안정성에 대해 실험하였다. 철과 크롬이온의 Nafion 막 투과도는 각각 $5.5{\times}10^{-5}$, $6.0{\times}10^{-5}cm^2/min$ 이었다. Nafion 막에서 바나듐 이온의 투과도 $2.9{\times}10^{-6}cm^2/min$ 보다 18.9~20.7배 높아 철과 크롬 이온의 Nafion 막 크로스오버가 성능 저하의 한 원인임을 보였다. 온도 증가에 따라 크로스오버가 급증(활성화 에너지 38.8 kJ/mol)하므로 낮은 온도에서 구동하는 것이 크로스오버에 의한 성능감소를 저하시키는 방법임을 나타냈다. Nafion막은 3M HCl용액에서 비교적 안정적이었다.

Keywords

References

  1. Leon, C. P., Ferrer, A. F., Gonzalez, J. G., Szanto, D. A. and Walsh, F. C., "Redox Flow Cells for Energy Conversion," Journal of Power Sources, 160, 716-732(2006). https://doi.org/10.1016/j.jpowsour.2006.02.095
  2. Prifti, H., Parasuraman, A., Winardi, S., Lim, T. M. and Maria, K. S., "Membranes for Redox Flow Battery Applications," Membranes, 2, 275-306(2012). https://doi.org/10.3390/membranes2020275
  3. Viswanathan, V., Crawford, A., Stephenson, D., Kim, S., Wang, W., Li, B., Coffey, G., Thomsen, E., Graff, G. and Balducci, P., "Cost and Performance Model for Redox Flow Batteries," J. Power Sources, 247, 1040-1051(2014). https://doi.org/10.1016/j.jpowsour.2012.12.023
  4. Wang, W., Luo, Q., Li, B., Wei, X., Li, L. and Yang, Z., "Recent Progress in Redox Flow Battery Research and Development," Adv. Funct. Mater., 23, 970-986(2013). https://doi.org/10.1002/adfm.201200694
  5. Thaller, L. H., "Electrically Rechargeable Redox Flow Cells," NASA Lewis Research Centre, TM X-71540(1974).
  6. Zeng, Y. K., Zhao, T. S., An, L., Zhou, X. L. and Wei, L., "A Compa Rative Study of All-vanadium and Iron-chromium Redox Flow Batteries for Large-scale Energy Storage, " Journal of Power Sources, 300, 438-443(2015). https://doi.org/10.1016/j.jpowsour.2015.09.100
  7. Cheng, D. S. and Hollax, E., "The Influence of Thallium on the Redox Reaction $Cr^{3+}/Cr^{2+}$," J. Electrochem. Soc., 132, 269-273(1985). https://doi.org/10.1149/1.2113807
  8. Hollax, E. and Cheng, D. S., "The Influence of Oxidative Pretreatment of Graphite Electrodes on the Catalysis of the $Cr^{3+}/Cr^{2+}$ and $Fe^{3+}/Fe^{2+}$ Redox Reactions," Carbon, 23, 655-664(1985). https://doi.org/10.1016/0008-6223(85)90225-8
  9. Johnson, D. A. and Reid, M. A.,"Chemical and Electrochemical Behavior of the Cr(III)/Cr(II) Half-cell in the Iron-chromium Redox Energy Storage System", J. Electrochem. Soc., 132, 1058-1062(1985). https://doi.org/10.1149/1.2114015
  10. Wu, C., Scherson, D., Calvo, E., Yeager, E. and Reid, M., "A Bismuth-based Electrocatalyst for the Chromous-chromic Couple in Acid Electrolytes", J. Electrochem. Soc., 133, 2109-2112(1986). https://doi.org/10.1149/1.2108351
  11. Gahn, R. F., Hagedorn, N. H. and Ling J. S., "Single Cell Performance Studies on the Fe/Cr Redox Energy Storage System Using Mixed Reactant Solutions at Elevated Temperature," NASA, Lewis Research Centre, TM-83385(1983).
  12. Oh, S. J., Jeong, J. H., Shin, Y. C., Lee, M. S., Lee, D. H., Chu, C. H., Kim, Y. S. and Park, K. P., "Characteristics of Poly(arylene ether sulfone) Membrane for Vanadium Redox Flow Battery," Kor. Chem. Eng. Res. 51, 671-676(2013). https://doi.org/10.9713/kcer.2013.51.6.671
  13. Giner-Sanz, J. J. and Ortega, E. M., "Hydrogen Crossover and Internal Short-circuit Currents Experimental Characterization and Modelling in a Proton Exchange Membrane Fuel Cell," Inter. J. Hydrogen Energy., 89, 13206-13216(2014).
  14. Kim, T. H., Lee, H., Sim, W. J., Lee, J. H., Kim, S. H., Lim, T. W. and Park, K. P., "Degradation of Proton Exchange Membrane by Pt Dissolved/deposited in Fuel Cells," Korean J. Chem. Eng., 26, 1265-1271(2009). https://doi.org/10.1007/s11814-009-0212-9
  15. Song, J., Kim, S., Ahn, B., Ko, J. and Park, K., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Kor. Chem. Eng. Res., 51, 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68
  16. Kim, T. H., Lee, J. H., Cho, G. J. and Park, K. P., "Degradation of Nafion Membrane by Oxygen Radical," Kor. Chem. Eng. Res., 44, 597-601(2006).

Cited by

  1. A comparative study of Nafion and sulfonated poly(ether ether ketone) membrane performance for iron-chromium redox flow battery vol.25, pp.9, 2018, https://doi.org/10.1007/s11581-019-02971-0