DOI QR코드

DOI QR Code

Investigation of Factors Influencing Methanol Crossover in Direct Methanol Fuel Cell

직접메탄올연료전지에서 메탄올 크로스오버에 미치는 인자 연구

  • Hyun, Min-Soo (Advanced Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Kim, Sang-Kyung (Advanced Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Lim, Seong-Yop (Advanced Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Lee, Byung-Rock (Advanced Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Peck, Dong-Hyun (Advanced Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Jung, Doo-Hwan (Advanced Fuel Cell Research Center, Korea Institute of Energy Research)
  • Published : 2008.02.28

Abstract

The amount of methanol crossover was measured with changing the operating condition by using a liquid methanol concentration sensor. Appropriate operating condition was discussed in terms of methanol crossover. Mechanism of methanol crossover was classified into three items which are diffusion, convection and electro-osmosis. Contribution of each mechanism to methanol crossover and the effect of operating condition were analyzed with varying methanol concentration, pressure difference between anode and cathode, current, temperature, and stoichiometry of anode fuel. Among the three mechanisms diffusion affected mostly and electro-osmosis effect was observed only under high methanol concentration.

직접메탄올연료전지의 운전 변수에 따른 메탄올 크로스오버를 메탄올 농도센서를 이용하여 정량적으로 측정하였으며 실제 셀 운전 시 메탄올크로스오버 저감의 측면에서 유리한 운전조건을 분석하였다. 메탄올 농도, 전극 양단의 압력차, 전류의 크기, 온도, stoichiometry등을 변화시켜 diffusion, convection, electro-osmosis의 메커니즘별 기여도와 실제 전지 운전 조건의 영향을 함께 분석하였다. 이상의 세 가지 메커니즘 중에서 농도 차이에 의한 diffusion이 가장 큰 영향을 미쳤으며 electro-osmosis에 의한 영향은 고농도에서만 관찰할 수 있었다.

Keywords

References

  1. E. Kjeang, J. Goldak, M. R. Golriz, J. Gu, D. James, and K. Kordesch, 'A parametric study of methanol crossover in a flowing electrolyte-direct methanol fuel cell' J. Power Sources, 153, 89 (2006) https://doi.org/10.1016/j.jpowsour.2005.03.181
  2. X. Ren, T. E. Springer, and S. Gottesfeld, 'Water and Methanol Uptakes in Nafion Membranes and Membrane Effects on Direct Methanol Cell Performance' J. Electrochem. Soc., 147(1), 92 (2000) https://doi.org/10.1149/1.1393161
  3. J. T. Wang, S. Wasmus, and R. F. Savinell, 'Real-Time Mass Spectrometric Study of the Methanol Crossover in a Direct Methanol Fuel Cell' J. Electrochem. Soc., 4, 1233 (1996).
  4. W. W. Yang, T. S. Zhao, and C. Xu, 'Three-dimensional two-phase mass transport model for direct methanol fuel cells' Electrochim. Acta, 53, 853 (2007) https://doi.org/10.1016/j.electacta.2007.07.070
  5. S. S. Sandhu, R. O. Crowther, and J. P. Fellner, 'Prediction of methanol and water fluxes through a direct methanol fuel cell polymer electrolyte membrane' Electrochim. Acta, 50, 3985 (2005) https://doi.org/10.1016/j.electacta.2005.02.048
  6. B. K. Kho, B. C. Bae, M. A. Scibioh, J. Y. Lee, and H. Y. Ha, 'On the consequences of methanol crossover in passiveair-breathing direct methanol fuel cells' J. Power Sources, 142, 50 (2005) https://doi.org/10.1016/j.jpowsour.2004.10.027
  7. E. H. Jung, U. H. Jung, T. H. Yang, D. H. Peak, D. H. Jung, and S. H. Kim, 'Methanol crossover through PtRu/Nafion composite membrane for a direct methanol fuel cell' Int. J. Hydrogen Energy, 32, 903 (2007) https://doi.org/10.1016/j.ijhydene.2006.12.014
  8. J. Cruickshank and K. Scott, 'The degree and effect of methanol crossover in the direct methanol fuel cell' J. Power Sources, 70, 40 (1998) https://doi.org/10.1016/S0378-7753(97)02626-8
  9. J. A. Drake, W. Wilson, and K. Killeen, 'Evaluation of the Experimental Model for Methanol Crossover in DMFCs' J. Electrochem. Soc., 151(3), A413 (2004) https://doi.org/10.1149/1.1646150
  10. T. Schaffer, T. Tschinder, V. Hacker, and J. O. Besenhard, 'Determination of methanol diffusion and electroosmotic drag coefficients in proton-exchange-membranes for DMFC' J. Power Sources, 153, 210 (2006) https://doi.org/10.1016/j.jpowsour.2005.05.079
  11. J. Han and H. Liu, 'Real time measurements of methanol crossover in a DMFC' J. Power Sources, 164, 166 (2007) https://doi.org/10.1016/j.jpowsour.2006.09.105
  12. C. Y. Du, T. S. Zhao, and W. W. Yang, 'Effect of methanol crossover on the cathode behavior of a DMFC:A half-cell investigation' Electrochim. Acta, 52, 5266 (2007) https://doi.org/10.1016/j.electacta.2007.01.089
  13. A. Casalegno, P. Grassini, and R. Marchesi, 'Experimental analysis of methanol cross-over in a direct methanol fuel cell' Appl. Therm. Eng., 27, 748 (2007) https://doi.org/10.1016/j.applthermaleng.2006.10.007