Transient rheological probing of PIB/hectorite-nanocomposites

  • Sung, Jun-Hee (Department of Chemical Engineering, Katholieke Universiteit Leuven) ;
  • Mewis, Jan (Department of Chemical Engineering, Katholieke Universiteit Leuven) ;
  • Moldenaers, Paula (Department of Chemical Engineering, Katholieke Universiteit Leuven)
  • Published : 2008.03.31

Abstract

Clay suspensions in liquid polymers exhibit a time-dependent behaviour that includes viscoelastic as well as thixotropic features. Because of the presence of interacting clay platelets, particulate networks can develop, which are broken down during flow and rebuild upon cessation of the flow. Here, the use of thixotropic techniques in probing flow-induced structures in nanocomposites is explored with data on a hectorite-poly(isobutylene) model system. By means of fast stress jump measurements the hydrodynamic contributions to the steady state stresses are determined as well as those caused by the stretching of the clay floes. Flow reversal measurements do not provide a clear indication of flow-induced anisotropy in the present case. The recovery of the clay microstructure upon cessation of flow is followed by means of overshoot and dynamic measurements. The development of a particulate network is detected by the appearance and growth of a low frequency plateau of the storage moduli. The modulus-frequency curves after various rest times collapse onto universal master curves, regardless of the pre-shear history or temperature. The scaling factors for this master curve are the crossover parameters. The crossover moduli are nearly a linear function of the crossover frequency, the relation being identical for recovery after shearing at different shear rates. This function depends, however, on temperature.

Keywords

References

  1. Alexandre, M. and P. Dubois, 2000, Polymer- layered silicate nanocomposites : preparation, properties and used of a new class of materials, Mater. Sci. Eng. 28, 1-63 https://doi.org/10.1016/S0927-796X(00)00012-7
  2. Barnes, H. A., 1997, Thixotropy-A review, J. Non-Newtonian Fluid Mech. 70, 1-33 https://doi.org/10.1016/S0377-0257(97)00004-9
  3. Batchelor, G. K., 1970, The stress system in a suspension of force-free particles, J. Fluid Mech. 41, 545-570 https://doi.org/10.1017/S0022112070000745
  4. Bonn, D., H. Tanaka, P. Coussot and J. Meunier, 2004, Ageing, shear rejuvenation and avalanches in soft glassy materials, J. Phys.: Condens. Matter 16, S4987-S4992 https://doi.org/10.1088/0953-8984/16/42/014
  5. Brandrup, J. and E. H. Immergut, 1989, Polymer Handbook 3rd, John Wiley and Sons, VII/175
  6. Dullaert, K. and J. Mewis, 2005a, Thixotropy: build-up and breakdown curves during flow, J. Rheol. 49, 1213-1230 https://doi.org/10.1122/1.2039868
  7. Dullaert, K. and J. Mewis, 2005b, Stress jumps on weakly flocculated dispersions: steady state and transient results, J. Colloid Interface Sci. 287, 542-551 https://doi.org/10.1016/j.jcis.2005.02.018
  8. Dullaert, K. and J. Mewis, 2008, to be published
  9. DuMond, J. W. M., 1947, Method of correcting low angle X-Ray diffraction curves for the study of small particle sizes, Phys. Rev. 72, 83-84
  10. Gadala-Maria, F. and A. Acrivos, 1980, Shear-induced structure in a concentrated suspension of solid spheres, J. Rheol. 24, 799-814 https://doi.org/10.1122/1.549584
  11. Giannelis, E. P., R. Krishnamoorti and E. Manias, 1999, Polymersilicate nanocomposites: model system for confined polymers and polymer brushes, Advances Polym. Sci. 138, 107-147 https://doi.org/10.1007/3-540-69711-X_3
  12. Giannelis, E. P. 1996, Polymer layered silicate nanocomposite, Adv. Mater. 8, 29-35 https://doi.org/10.1002/adma.19960080104
  13. Green, D. L. and J. Mewis, 2006, Connecting the wetting and rheo-logical behaviours of poly(dimethylsiloxane)-grafted silica spheres in poly(dimethylsiloxane) melts, Langmuir 22, 9546-9553 https://doi.org/10.1021/la061136z
  14. Grizzuti, N. and O. Bifulco, 1997, Effect of coalescence and breakup on the steady-state morphology of an immiscible polymer blend in shear flow, Rheol. Acta. 36, 406-415 https://doi.org/10.1007/BF00396327
  15. Hoffmann, B., C. Dietrich, R. Thomann, C. Friedrich and R. Mulhaupt, 2000, Morphology and rheology of polystyrene nanocomposites based upon organoclay, Macromol. Rapid Comm. 21, 57-61 https://doi.org/10.1002/(SICI)1521-3927(20000101)21:1<57::AID-MARC57>3.0.CO;2-E
  16. Hyunh, H. T., N. Roussel and P. Coussot, 2005, Aging and free surface flow of a thixotropic fluid, Phys. Fluids 17, 033101- 033101-9 https://doi.org/10.1063/1.1844911
  17. Jansseune, T., I. Vinckier, P. Moldenaers and J. Mewis, 2001, Transient stresses in immiscible model polymer blends during start-up flow, J. Non-Newtonian Fluid Mech. 99, 167-181 https://doi.org/10.1016/S0377-0257(01)00124-0
  18. Kato, M., A. Usuki and A. Okada, 1997, Synthesis of polypropylene oligomer-clay intercalation compounds, J. Appl. Polym. Sci. 66, 1781-1785 https://doi.org/10.1002/(SICI)1097-4628(19971128)66:9<1781::AID-APP17>3.0.CO;2-Y
  19. Kawasumi, M., N. Hasegawa, M. Kato, A. Usuki and A. Okada, 1997, Preparation and mechanical properties of polypropyleneclay hybrids, Macromolecules 30, 6333-6338 https://doi.org/10.1021/ma961786h
  20. Krishnamoorti, R. and E. Giannelis, 1997, Rheology of end-tethered polymer layered silicate nanocomposites, Macromolecules 30, 4097-4102 https://doi.org/10.1021/ma960550a
  21. Krishnamoorti, R. and K.Yurekli, 2001, Rheology of polymer layered silicate nanocomposites, Curr. Opin. Colloid Interface Sci. 64, 464-470
  22. Le Meins, J-F., P. Moldenaers and J. Mewis, 2002, Suspensions in polymer melts, 1. effect of particle size on the shear flow behaviour, Ind. Eng. Chem. Res. 41, 6297-6304 https://doi.org/10.1021/ie020117r
  23. Lele, A., M. Mackley, C. Ramesh and G. Galgali, 2002, In situ rheo-x-ray investigation of flow-induced orientation in layered silicate-syndiotactic polypropylene nanocomposites melt, J. Rheol. 46, 1091-1110 https://doi.org/10.1122/1.1498284
  24. Mackay, M. E. and B. Kaffashi, 1995, Stress jumps of charged colloidal suspensions, measurement of the elastic-like and viscous stress components, J. Colloid Interface Sci. 174, 117-123 https://doi.org/10.1006/jcis.1995.1372
  25. Mackay, M. E., A. Tuteja, P. M. Duxbury, C. J. Hawker, B. Van Horn, Z. Guan, G. Chen and R. S. Krishnan, 2006, General strategies for nanoparticle dispersion, Science 311, 1740-1743 https://doi.org/10.1126/science.1122225
  26. Mackay, M. E., C. H. Liang and P. J. Halley, 1992, Instrument effects on stress jump measurements, Rheol. Acta. 31, 481-489 https://doi.org/10.1007/BF00701127
  27. Mewis, J., 1979, Thixotropy- a general review, J. Non-Newtonian Fluid Mech. 6, 1-20 https://doi.org/10.1016/0377-0257(79)87001-9
  28. Mewis, J., A. J. B. Spaull and J. Helsen, 1975, Structure hysteresis, Nature 253, 618-619 https://doi.org/10.1038/253618a0
  29. Minale, M., P. Moldenaers and J. Mewis, 1999, Transient flow experiments in a model immiscible polymer blend, J. Rheol. 43, 815-827 https://doi.org/10.1122/1.551000
  30. Mobuchon, C., P. J. Carreau and M-C. Heuzey, 2007, Effect of flow history on the structure of a non-polar polymer/clay nanocomposite model system, Rheol. Acta. 46, 1045-1056 https://doi.org/10.1007/s00397-007-0188-5
  31. Moldenaers, P., G. G. Fuller and J. Mewis, 1989, Mechanical and optical rheometry of polymer liquid-crystal domain structure, Macromolecules 22, 960-965 https://doi.org/10.1021/ma00192a071
  32. Pignon, F., A. Magnin and J-M. Piau, 1998, Thixotropic behaviour of clay dispersions: combinations of scattering and rheometric techniques, J. Rheol. 42, 1349-1373 https://doi.org/10.1122/1.550964
  33. Potanin, A., 2004, Thixotropy and rheopexy of aggregated dispersions with wetting polymer, J. Rheol. 48, 1279-1293 https://doi.org/10.1122/1.1807844
  34. Prasad, V., V. Trappe, A. D. Dinsmore, P. N. Segre, L. Cipelletti and D. A.Weitz, 2003, Universal features of the fluid to solid transition for attractive colloidal particles, Faraday Discuss. 123, 1-12 https://doi.org/10.1039/b211107c
  35. Ray, S. S. and M. Okamoto, 2003, Polymer/layered silicate nanocomposites: a review from preparation to processing, Prog. Polym. Sci. 28, 1539-1641 https://doi.org/10.1016/j.progpolymsci.2003.08.002
  36. Ren, J., B. Casanueva, C. Mitchell and R. Krishnamoorti, 2003, Disorientation kinetics of aligned polymer layered silicate nanocomposites, Macromolecules 36, 4188-4194 https://doi.org/10.1021/ma025703a
  37. Solomon, M. J., A. S. Almusallam, K. F. Seefeldt, A. Somwangthanaroj and P. Varadan, 2001, Rheology of polypropylene/ clay hybrid materials, Macromolecules 34, 1864-1872 https://doi.org/10.1021/ma001122e
  38. Trappe, V. and D. A.Weitz, 2000, Scaling of the viscoelasticity of weakly attractive particles, Phys. Rev. Lett. 85, 449-452 https://doi.org/10.1103/PhysRevLett.85.449
  39. Vaia, R. and E. Giannelis, 1997, Polymer melt intercalation in organically-modified layered silicates: model predictions and experiement, Macromolecules 30, 8000-8009 https://doi.org/10.1021/ma9603488
  40. Vermant, J., S. Ceccia, M. K. Dolgovskij, P. L. Maffenttone and C. W. Macosko, 2007, Quantifying dispersion of layered nanocomposites via melt rheology, J. Rheol. 51, 429-450 https://doi.org/10.1122/1.2516399
  41. Vinckier, I., J. Mewis and P. Moldenaers, 1997, Stress relaxation as a microstructural probe for immiscible polymer blends, Rheol. Acta. 36, 513-523 https://doi.org/10.1007/BF00368129
  42. Willenbacher, N., 1996, Unusual thixotropic properties of aqueous dispersions of Laponite RD, J. Colloid Interface Sci. 182, 501-510 https://doi.org/10.1006/jcis.1996.0494
  43. Wyss, M. M., E. V. Tervoort and L. J. Gauckler, 2005, Mechanics and microstructures of concentrated particle gels, J. Am. Ceram. Soc. 88, 2337-2348 https://doi.org/10.1111/j.1551-2916.2005.00622.x